簡易檢索 / 詳目顯示

研究生: 邱顥睿
Ciou, Hao-Ruei
論文名稱: 同軸互感線圈式渦電流位置感測器之研究
Study of Coaxial Mutual Inductor Coils in Eddy Current Position Sensors
指導教授: 王培仁
Wang, Pei-Jen
口試委員: 李昇憲
Li, Sheng-Shian
孟嘉祥
Menq, Chia-Hsiang
茆尚勳
Mao, Shang-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 75
中文關鍵詞: 位置感測渦電流感測同軸互感線圈
外文關鍵詞: Position Sensing, Eddy Current Sensing, Coaxial Mutual Inductance Coil
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    隨著科技的發展,對金屬材料加工精度的要求日益提高,可透過感測技術隨時監控金屬材料的加工狀況,並對設備運轉的狀況進行精確檢測從而評估潛在風險,如偏心檢測、軸向位移檢測等等,根據以上情況所使用的關鍵技術即是位置檢測。量測物體之距離主要有三種,光學感測、超音波感測以及磁性感測,而磁性感測能夠提供高精確性及可靠度,且具有一項特性為無損檢測(Non-Destructive Testing),可在不破壞量測物體的前提下取得相對位置,現如今磁性感測技術已趨於成熟,在靈敏度、精確性、解析度以及響應時間皆有顯著的成長,磁性的感測技術有以下幾種:(1)霍爾(Hall)感測,(2)渦電流檢測,(3)異向性磁阻(AMR)感測,(4)巨磁阻(GMR)感測,(5)穿隧磁阻(TMR)感測。
    本論文針對渦電流感測器應用於位置量測進行研究,採用同軸式互感線圈架構,建立理論模型進行感測器之幾何結構設計,分析電感繞線堆疊方式,根據加工條件建立渦電流物理模型,以CAE數值模擬方式分析位置變動下渦電流效應之整體系統響應,紀錄感測系統之性能參數,再以實驗雛型規劃設計驅動感測器之定電流源電路,結合低通濾波器濾除雜訊,以實驗驗證渦電流位置感測器之分析成果,期望能為渦電流位置量測之設計及分析應用產出貢獻。


    ABSTRACT
    As technology advances, the demands for high-precision metal processing have increased. Sensing technology enables real-time monitoring of processing conditions and detecting of equipment operations to compensate deviations such as eccentricity and axial mis-alignment. Position sensing is crucial in the above applications mainly based on methods as optical, ultrasonic, and magnetic principle. Magnetic sensing provides precision, reliability and non-destructive characteristics without touching objects. It has been constantly improved in sensitivity, accuracy, resolution, and response time. Various techniques include Hall sensing, eddy current detection, Anisotropic Magneto Resistive, Giant Magneto Resistive and Tunneling Magneto Resistive principle.
    This thesis explores eddy current sensors for position measurement using a coaxial mutual inductance coil structure. A theoretical model is developed for sensor geometry and inductor winding analysis, with a physical eddy current model based on processing conditions. CAE numerical simulations are employed for analysis of system responses during transience. An experimental prototype is built with a constant current source driver and low-pass filter to reduce noises. Experimental results validate the theoretical results to conclude the design and application of eddy current position measurement technologies is essential and applicable.

    目錄 摘要 I 目錄 IV 圖目錄 VI 表目錄 IX 符號文字對照表 X 第一章 序論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 文獻回顧 3 1-3-1 電磁式感測器 3 1-3-2 渦電流式感測器 5 1-3-3 電感電容振盪器 8 第二章 基礎理論介紹 15 2-1 電磁學基礎理論 15 2-1-1 電磁場理論 15 2-1-1 電感與電感器 17 2-1-2 磁性材料與磁滯現象 18 2-2 渦電流理論 20 2-2-1 渦電流效應及感測器模型 20 2-2-2 集膚效應 22 2-2-3 渦流損失 23 2-3 電感線圈設計理論 24 2-3-1 空心電感設計 24 2-3-2 同軸互感線圈 26 第三章 線圈設計與模擬計算 34 3-1 感測器線圈設計 34 3-1-1 空氣芯介紹設計 34 3-1-2 感測線圈的纏繞設計 35 3-2 建模軟體及模擬分析 36 3-2-1 模擬軟體介紹 36 3-2-2 靜態磁場分析 36 3-2-3 有限元素法分析 38 3-2-4 渦電流分析 39 第四章 實驗驗證及分析 50 4-1 前言 50 4-2 定電流源電路設計 50 4-2-1 霍倫電流泵 50 4-2-2 電路模擬及實測 51 4-3 實驗設計與量測系統架構 52 4-4 量測系統校正 53 4-5 實驗數據與模擬分析比較 54 第五章 結論與討論 70 5-1結論 70 5-1 未來展望 71 參考文獻 73

    參考文獻
    [1] https://www.micro-epsilon.tw/fileadmin/download/excerpts/dax--eddyNCDT-3060--en.pdf (2024)
    [2] Nihtianov, S., "Measuring in the Subnanometer Range: Capacitive and Eddy Current Nanodisplacement Sensors." IEEE Industrial Electronics Magazine 8.1 (2014): 6-15.
    [3] Palles.-Arreny, R. , and Webster, J. G., Sensors and Signal Conditioning, Wiley-Interscience Publication , Second Edition , ISBN-978-0471332329 (2001)
    [4] Crescentini, M., Syeda, D. F., and Gibiino, G. P., "Hall-effect Current Sensors: Principles of Operation and Implementation Techniques." IEEE Sensors Journal 22.11 (2021): 10137-10151.
    [5] George, B., Tan, Z., and Nihtianov, S., “Advances in Capacitive, Eddy current, and Magnetic Displacement Sensors and Corresponding Interfaces.” IEEE Transactions on Industrial Electronics”, 64 (12), 9595-9607. (2017).
    [6] Fericean, S., and Droxler, R. “New Noncontacting Inductive Analog Proximity and Inductive Linear Displacement Sensors for Industrial Automation”, IEEE Sensors Journal, 7(11), 1538-1545. (2007).
    [7] Robaina, R. R., Alvarado, H. T., and Plaza, J. A., "Planar Coil-based Differential Electromagnetic Sensor with Null-offset." Sensors and Actuators A: Physical 164.1-2 (2010): 15-21.
    [8] Roach, S. D. "Designing and Building an Eddy Current Position Sensor." Sensors-the Journal of Applied Sensing Technology, 15.9, (1998): 56-74.
    [9] Nabavi, M. R., and Nihtianov, S., "Design Strategies for Eddy-current Displacement Sensor Systems: Review and Recommendations." IEEE Sensors Journal 12.12 (2012): 3346-3355.
    [10] Oberle, M., Reutemamn R., Hertle, J. and Huang, Q., "A 10-mW Two-channel Fully Integrated System-on-chip for Eddy-current Position Sensing." IEEE Journal of Solid-State Circuits 37.7 (2002): 916-925.
    [11] Cheng, D. K. , Field and Wave Electromagnetics, Pearson Education , Second Edition , ASIN B0094XMR1Y (2007)
    [12] Jiles, D., Introduction to Magnetism and Magnetic Materials, Springer-Science+Business Media , (1991)
    [13] Magnetic hysteresis loop Retrieved from: https://www.electronics-tutorials.ws/electromagnetism/magnetic-hysteresis.html
    [14] Zona, D. I., Tian, G. Y., Suthaweekul, R. and Naqvi, M.," Design and Optimization of Mutual Inductance Based Pulsed Eddy Current Probe", Measurement 144 (2019): 402-409.
    [15] 莊永全,“渦電流位移感測器之設計與多自由度位移系統之特性研究”,台灣大學機械所碩士學位論文(2002)
    [16] Wu, D. H., He, T. F., Wang, and Su, L. H.," Analytical Model for Mutual Inductance Between Two Rectangular Coils in Driver Pickup Mode for Eddy Current Testing." Nondestructive Testing and Evaluation 33.1 (2018): 20-34.
    [17] Eddy Current Theory Innospect: https://studylib.net/doc/18056871/eddy-current-theory
    [18] 陳瑋彤 ,“基於誘導渦電流建構穿隧磁阻式速度感測器之研究”,,國立清華大學動力機械工程學系碩士學位論文 , (2022)
    [19] Hysteresis loss and Eddy current losses Retrieved from: https://www.motioncontroltips.com/hysteresis-loss/
    [20] Hagedorn, J., Sell-Le Blanc, F. and Fleischer, F., Handbook of Coil Winding, Springer Berlin Heidelberg, p.102 (2018).
    [21] Rene, B-C., Isobe, T. and Molinas, M.," Optimal Design of Air-core Inductor for Medium/high Power DC-DC Converters." 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2016.
    [22] Murgatroyd, P.,“ The Brooks Inductor: A Study of Optimal Solenoid Cross Sections,” Electric Power Applications, IEE Proceedings B, vol. 133, no. 5, pp. 309–314, 1986.
    [23] Babic, S. I., and Akyel, C.," New Analytic-numerical Solutions for the Mutual Inductance of Two Coaxial Circular Coils with Rectangular Cross Section in Air." IEEE Transactions on Magnetics 42.6 (2006): 1661-1669.
    [24] Encyclopedia MagneticaTM, Proximity effect: https://e-magnetica.pl/doku.php /proximity_effect
    [25] Mahnam, A., Hassan, Y., and Mohsen, M, S.," Comprehensive Study of Howland Circuit with Non-ideal Components to Design High Performance Current Pumps," Measurement, 82 (2016): 94-104.
    [26] Jiang, N.," A Large Current Source with High Accuracy and Fast Settling." Analog Dialogue 52.4 (2018): 8-11.
    [27] OP37 Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/OP37.pdf (2024)

    QR CODE