簡易檢索 / 詳目顯示

研究生: 羅中倫
Lo Chung-Lun
論文名稱: 應用於低溫共燒之低損耗鈣斜長石基玻璃陶瓷之研製
Development of Low-loss Anorthite-based Glass-ceramic for LTCC Application
指導教授: 杜正恭
Duh Jenq-Gong
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2002
畢業學年度: 91
語文別: 英文
論文頁數: 166
中文關鍵詞: 玻璃陶瓷低溫共燒鈣斜長石熱分析
外文關鍵詞: glass-ceramic, LTCC, Anorthite, nucleation, crystallization, DTA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多層低溫共燒陶瓷具備整合主動元件或模組及被動元件的能力,並能同時達到模組縮小化及低成本的要求。再者,低溫型可共燒陶瓷(LTCC)構裝材料系統因具有低介電常數(4-8),可縮短訊號的延遲時間,並在相對低溫下(800-1000oC)可與高導電性金屬共燒,以降低訊號在傳遞時強度的減弱,並且其膨脹係數可配合IC元件。一般所知陶瓷構裝材料都有相當高的燒結溫度(1250oC以上),因此限制了所使用的金屬導體材料。在1250oC以上使用之金屬導體係高含量的Pd、Pt等銀合金,此類合金或金屬都有較高的傳導電阻(conductivity resistance)。因此,欲應用在低溫可燒成之高頻用陶瓷基版材料時,材料組成及燒結完成後須具有較低之介電常數、且熱膨脹係數可與矽晶片之熱膨脹係數配合,同時要在l000oC以下能夠和銅、銀、金、銀鈀等金屬導體同時緻密燒結(co-fire),及保有適當的機械強度及優良之介電特性。
    本研究採用鈣斜長石基之玻璃陶瓷系統,利用含有玻璃相的多晶固體材料,其製造由原料選擇及熔融製備玻璃開始,經過高溫均質化後得到玻璃陶瓷粉體,在固定升溫速率下施予熱處理。利用熱分析之方法得到鈣斜長石基玻璃陶瓷粉在熱處理中玻璃結晶的相關資料及重要之玻璃軟化點溫度。同時,由於結晶溫度會受到表面成核及內部異質成核數目的影響,也評估了成核劑對結晶溫度的影響。研究中著重CaO-Al2O3-2SiO2玻璃陶瓷系統中孕核現象之機制探討及晶體成長動力學之分析。並以此為基礎,可在非恆溫熱處理製程中控制粉體燒結行為,使其在鈣斜長石陶瓷相開始成長前完全緻密化。由化學組成、孕核劑、粉末粒徑大小及非恆溫結晶熱處理程序的調整,深入研究晶體的相轉變過程、陶瓷結晶之量化評估、以及各種相關微結構的觀察及相鑑定分析。並分析其高頻介電性質後,可符合在LTCC高頻通訊元件之應用。本研究成功研發不含鉛化物與鹼金屬離子之玻璃陶瓷系統,可在低於900℃之溫度時藉著玻璃質之黏度流動使粉體完全燒結緻密以去除空孔缺陷,再經過非恆溫熱處理 (<950℃)使其歷經非均質孕核及高度結晶化而得到一低介電常數(k=8),及極低之高頻介電損失(<0.0005)低溫共燒之基板材料,且其熱膨脹係數與矽晶片之值相當接近,故在LTCC高頻元件應用上有相當大之開發潛力。


    To develop a low-loss, lead-free, non-alkali LTCC substrate material for microwave/microelectronics applications, glass composites in the CaO-Al2O3-SiO2 system with nucleating agents were employed to derive anorthite-based glass-ceramic powders. A systematic study of nucleation and growth kinetics in the anorthite-based glass-ceramic was conducted. The determination of crystallization kinetic parameters for anorthite (CaO-Al2O3-2SiO2) glass containing TiO2 as nucleating agents was performed by non-isothermal process. Thermal characteristics, microstructure and phase transformation during non-isothermal heat-treatment were explored with the aid of DTA, HTXRD, OM, EPMA, SEM, TEM technologies.
    Under non-isothermal conditions, the crystallization activation energy for anorthite glass nucleated with TiO2 was evaluated as 412kJmol-1. An analytical approach to acquire the Avrami constant was established by introducing appropriate boundary conditions. This technique, considered as three-dimensional bulk crystallization during non-isothermal treatment with various heating rates, provided reasonable precision in determination of Avrami constant.

    Anorthite crystals showed preferential nucleation at specific sites with rutile TiO2 crystals precipitated from the glassy matrix and anorthite crystallization was governed by heterogeneous volume nucleation, in which the efficient nucleation temperature for this glass-ceramic was 780~820°C. High density and unimodal distribution of nuclei throughout glass powders and the associated mechanism was volume crystallization predominant for anorthite-based glass-ceramic powders. The introduced TiO2 thus played the role of nucleating agents to reducing the crystallization temperature lower than 900ºC for anorthite-based glass-ceramics.

    A dense and low-loss glass-ceramic with predominant crystal phase of anorthite was successfully produced by using ultra-fine glass powders with sub-micron scale particle size distribution. Fully-densified temperature was as low as 900°C, and sufficient crystallization could be achieved by subsequently raising the firing temperature to 950°C, accompanied by the enhanced dielectric quality factor. The degree of crystallization affected the dielectric property of sintered glass-ceramics, such as the dielectric constant(k), quality factor(Q), coefficient of thermal expansion(CTE), temperature coefficient of frequency(TCF), temperature coefficient of dielectric constant(TCK). After considering the sintering and crystallization mechanisms, the optimization of heat-treatment process for as-fabricated CaO-Al2O3-SiO2 glass-ceramics was presented. In addition, by controlling the crystallinity of anorthite crystal, the 5wt.% TiO2 nucleated anorthite glass-ceramic possessed a preferable dielectric constant of 8 and a rather low dielectric loss of 0.00045 at 10GHz, which are attractive for application in future LTCC substrates.

    Chapter I Introduction…………………………………1 1.1 Background…………………………………………………………1. 1.2 Motive and goal of the present study……………………………4 1.2.1 Critical issue………………………………………………4…. 1.2.2 Motive and goal………………………………………5……... Chapter II Literature Review…………………………………13…… 2.1 Packaging……………………………………………………13……… 2.1.1 High-performance ceramic packaging……………………14…… 2.2 Overview of LTCC Technology………………………………17…….. 2.3 Glass-ceramic……………………………………………………21….. Chapter III Analytical Method…………………………………38.. Chapter IV Experimental Procedure………………………………44... 4.1 Preparation of glass samples…………………………………44.. 4.2 Characterization and Analysis…………………………………45. 4.2.1 Thermal analysis……………………………………………45. 4.2.2 Composition analysis………………………………………46.. 4.2.3 Particle size distribution…………………………………46….. 4.2.4 Phase analysis………………………………………………46.. 4.2.5 Microstructure observation…………………………………47. 4.2.6 Powder density and bulk density……………………………48. 4.3 Dielectric property………………………………………………48... Chapter V Results………………………………………………………50 5.1【Part-A】Boundary-conditions evaluation in determining the dimensionality for crystallization of anorthite glass in LTCC applications………………………………………………….……50 5.1.1 Results of Part-A……………………………………………50. 5.1.1-1 Analysis of DTA exothermal peaks………………….51 5.1.1-2 Determination values of E and ν………………………52 5.1.1-3 Verification of characteristic temperatures in DTA curve………………………………………………………54.. 5.1.1-4 Boundary-conditions calculation for n……………54.. 5.1.2 Summary of Part-A………………………………………58…. 5.2【Part-B】Microstructure Characteristics for Anorthite Composite Glass with Nucleating Agents of TiO2 under Non-isothermal Crystallization…………………………………………70……5.1.1 Results of Part-B…………………………………………70…. 5.2.2 Summary of Part-B…………………………………………77.. 5.3【Part-C】Nucleation Behavior in Anorthite-Based Glass-Ceramic powders…………………………………………………86………. 5.3.1 Results of Part-C………………………………………86……. 5.3.2 Summary of Part-C………………………………………93…. 5.4【Part-D】Effects of particle size on the sintering behavior and the dielectric properties of anorthite-based glass-ceramics………103… 5.4.1 Results of Part-D………………………103…………………… 5.4.1-1 Crystallization behavior………………103…………… 5.4.1-2 Sintering properties………………………105………… 5.4.1-3 Dielectric properties of sintered samples……108…….. 5.4.2 Summary of Part-D…………………………………109………. 5.5【Part-E】Low Temperature Sintering and Microwave Dielectric Properties of Anorthite-based Glass-Ceramics………………117….. 5.5.1 Results of Part-E…………………………………………117….. 5.5.2 Summary of Part-E…………………………….…………125.… Chapter VI Discussion…………………………………138………………. 6.1 Materials issue and powders preparation……………139………… 6.2 Sintering stage………………………………………141…………. 6.3 Nucleation stage…………………………………………144……….. 6.4 Crystallization stage………………………………146……………… Chapter VII Conclusions………………………………148……………… References…………………………………………………150………

    S. Nishigaki and J. Fukuta, "Low-temperature, Cofirable, Multilayerred Ceramics Bearing Pure-Ag Conductors and Their Sintering Behavior," Adv. Ceram., 26 199-215(1989).
    S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, "Cordierite Glass-ceramics for Multilayer Ceramic Packaging," Am. Ceram. Soc. Bull., 72[1] 90-95(1993).
    R. R. Tummala,"Ceramic and Glass-Ceramic Packaging in the 1990s," J. Am. Ceram Soc. 74 895-908(1991).
    R. R. Tummala, S. Ahmed,"Overview of Packaging for the IBM Enterprise System 9000 Based on the Glass Ceramic Copper Thin-film Thermal Conduction Module," IEEE Trans. Components: Hybrids Manuf. Technol. 15[4] 426-31(1992).
    D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, "Low Dielectric Constant Alumina-Compatible Co-Fired Multilayer Substrate," Ceramic Eng. Sci. Proc., 9[11-12] 1567-68(1988).
    G. V. Chandrashekhar and M. W. Shafer," Anion Conduction in Fluorozirconate Glasses," Mater. Res. Bull.,15[2] 221-25(1980).
    R. A. Gdula, "Anorthite Ceramic Dielectrics," Am. Ceram. Soc. Bull., 50[6] 555-57(1971).
    M. G. M. U. Ismail and H. Aria, "Sol-Gel Synthesis of B2O3-Doped Anorthite and Its Characterization, " J. Ceram. Soc. Jpn.,100[12] 1385-89(1992).
    A. Inoue, J. Fukuta, Y. Matano, and Y. Matsumoto, "Anorthite and Thermal Expansion of CaO-Al2O3-SiO2-B2O3 Ceramics," J. Ceram. Soc. Jpn., 100[2] 208-10(1992).
    Corning Corporation, U.S. Patent 4187115, 5 Feb. 1980.
    J. A. Topping, Ceram. Bull. 56 (1977) 574
    NEC Corporation, U.S. Patent 5506058, 9 Apr. 1996.
    K. Ikuina, M. Kimura, K. Utsumi, S. Ohnagari, Y. Kosugi, and O. Yamamoto, "Glass-Ceramic Multichip Module for Satellite Microwave Communication System," Int. Microcircuit and Electronic Packaging, 18[4] 431-38 (1995).
    P. D. Garn and S. S. Flaschem: Anal. Chem. 29(1957)271.
    W. Lodding and L. Hammell: Anal. Chem. 32(1960)657.
    L. G. Berg and I. S. Rassonskaya: Dokl. Akad. Nauk. SSSR. 73(1950)113.
    E. M. Bollin, J. A. Dunne, and P. F. Kerr: Science, 131(1960)664.
    E. A. Giess, J. P. Fletcher, and L. W. Herron, " Isothermal Sintering of Cordierite-Type Glass Powders," J. Amer. Ceram. Soc. 67[8] 549-52(1984).
    M. A. Mccoy and A. H. Heuer, " Microstructural Characterization and Fracture-Toughness of Cordierite ZrO2 Glass-Ceramics," J. Amer. Ceram. Soc. 71[8] 673-77(1988).
    T. Rudolph, W. Pannhorst, G. Petzow, " Determination of Activation Energies for the Crystallization of a Cordierite-type Glass," J. Non-Cryst. Solids. 155[3] 273-81(1993).
    A. Marotta, A. Buri, and F. Branda, "Nucleation in Glass and Differential Thermal-Analysis," J. Mater. Sci. 16[2] 341-44 (1981).
    N. P. Padture, H. M. Chan, "On the Constrained Crystallization of Anorthite(CaO-Al2O3-2SiO2)," J. Mater. Res., 7[1] 170-77(1992).
    H. C. Park, S. H. Lee, M. M. Son, H. S. Lee, I. Yasui, " Nucleation and Crystallization Kinetics of CaO-Al2O3-2SiO2 in Powdered Anorthite Glass," J. Mater. Sci. 31[16] 4249-53 (1996).
    C. Leonelli, T. Manfredini, M. Paganelli, P. Pozzi, G. C. Pellacani, " Crystallization of Some Anorthite Diopside Glass Precursors," J. Mater. Sci., 26[18] 5041-46(1991).
    B. Ryu, I. Yasui," Sintering and Crystallization Behavior of a Glass Pwder and Block with a Composition of Anorthite and the Microstructure Dependence of Its Thermal-Expansion," J. Mater. Sci. 29[12] 3323-28 (1994).
    Y. Kobayashi, E. Kato, " Low-temperature Fabrication of Anorthite Ceramics,"J. Am. Ceram. Soc, 77[3] 833-34(1994).
    R. G. Duan, K. M. Lian, " The effect of additives on the crystallization of Na2O-CaO-MgO-Al2O3-SiO2-TiO2 system glasses," J. Mater. Proc. Tech., 75[1-3] 235-37(1998).
    E. Wittman, E. D. Zanotto, " Surface nucleation and growth in Anorthite glass," J. Non-Cryst. Solids., 271[1-2] 94-9 (2000).
    R.A. Gudla, "Anorthite Ceramic Dielectrics," Am. Ceram. Soc. Bull., 50[6] 555-57 (1971).
    M. G. M. U. Ismail and H. Arai, "Sol-Gel Synthesis of B2O3-Doped Anorthite and Its Characterization," J. Ceram. Soc. Jpn., 100[12] 1385-89 (1992).
    B. Ryu, I. Yasui, "Sintering and Crystallization Behavior of a Glass Powder and block with a Composition of anorthite and the Microstructure Dependence of its Thermal-Expansion," J. Mater. Sci., 29[12] 3323-28 (1994).
    R. R. Tummala and E. J. Rymaszewski, Microelectronic Packaging Handbook, pp. 25-63.Van Nostrand-Reinhold, New York, 1989.
    R. R. Tummala," Multichip Packaging in IBM, Past, Present, and Future," Proceeding of International Conference on Multichip Modules, pp.1-11, 1995.
    R. R. Tummala, J. U. Knickerbocker et al., "High Performance Glass ceramic/Copper Multilayer Substrate with Thin Film Redistribution," IBM J. Res. Devel., 36[5] 889-903(1992).
    T. Watari, "The NEC SX Supercomputer Technology," pp.54-57 in Proceeding of the IEEE International Conference on Computer Design VLSI in Computers. IEEE, New York, 1986.
    B. S. Landman and R. L. Russo, "On a Pin vs Block Relationship for Partitions of Logic Graphs," IEEE Trans. Comput., C-20[12] 1469-79(1971).
    R. R. Tummala, "Glass Composition of Glass-Metal Packages," U.S. Pat. No.3640738, 1971.
    K. Wakino, T. Nishikawa, Y. Ishikawa, and H. Tamura, "Dielectric Resonator Materials and Their Applications for Mobile Communication Systems," Br. Ceram. Trans. J., 89 39-43(1990).
    H. T. Sawhill, "Materials Compatibility and Co-sintering Aspects in Low Temperature Co-fired Ceramic Packages," Ceram. Eng. Sci. Proc., 9[11-12] 1603(1988).
    S. Toraka, K. Hoshi, T. Honda, K. Onigata, and N. Yamaoka, "Properties of Low-temperature Co-fired Multilayer Ceramic Substrates with Buried Passive Components," Proceedings of the International Microelectronic Conference, P.83(1986).
    Y. Baba, H. Ochi, and S. Segawa, "High Reliability Internal Capacitor of LTCC," IEEE. Trans. Comp, Pack. & Manu.Tech. Part-A, 18[1] 170-73(1995).
    H. Mandai, Y. Sakabe, and J. P. Canner, "Multilayer Ceramic NPO Capacitors with Copper Electrode" pp.313-27 in Ceramic transactions, Vol. 15. Materials and Processes for Microelectronic System. Edited by K. M. Nair, R. Pohanka, and R. C. Buvhanan. American Ceramic Society, Westerville, OH, 1990 .
    I Burn and W. C. Porter, "Processing Multilayer Ceramics with Internal Copper Conductors," pp.375-90 in Ceramic transactions, Vol. 15. Materials and Processes for Microelectronic System. Edited by K. M. Nair, R. Pohanka, and R. C. Buvhanan. American Ceramic Society, Westerville, OH, 1990.
    H. Mandai, K. Wakino, H. Okamura, and J. P. Canner, "A Low Temperature Cofired Multilayer Ceramic L-C Filter with Copper Conductors," pp.391-404 in Ceramic transactions, Vol. 15. Materials and Processes for Microelectronic System. Edited by K. M. Nair, R. Pohanka, and R. C. Buvhanan. American Ceramic Society, Westerville, OH, 1990.
    H. Kagata, T. Inoue, J. Kato, and I. Kameyama, "Low-Fire Bismuth-based Dielectric ceramics for Microwave Use," Jpn. J. Appl. Phys., Part 1, 31[9B]3152-5(1992).
    H. Kagata, T. Inoue, J. Kato, I. Kameyama, and T. Ishizzaki, "Low-Fire Microwave Dielectric Ceramics and Multilayer Devices with Silver Internal Electrode" pp.81-90 in Ceramic Transaction, Vol.32, Dielectric Ceramics; Processing, Properties, and Applications. Edited by K. M. Nair, J. P. Guha, and A. Okamoto. American Ceramic Society, Westerville, OH, 1993.
    H. Mandai and S. I. Okubo, "Low Temperature Fireable Dielectric Ceramic Material," pp.91-100 in Ceramic Transaction, Vol.32, Dielectric Ceramics; Processing, Properties, and Applications. Edited by K. M. Nair, J. P. Guha, and A. Okamoto. American Ceramic Society, Westerville, OH, 1993.
    C. Q. Scrantom and J. C. Lawson, “LTCC Technology: Where we are and where we’re going to,” Proceedings of the IEEE MTT-S International Topical
    Symposium for Wireless Applications, Feb. 1999, pp 193-200.
    J. W. Sheen, "LTCC-MLC Duplexer for DCS-1800", IEEE MTT-Transactions,47[ 9] 1883-89 (1999).
    R. C. Mason and K .P. Mikeska, "Effect of Metal Loading and Circuit Design on Sintering Dielectric Tape Shrinkage for Low Temperature Cofired Ceramic Packages," Proc. 1992 Int. Microelectronic Symposium, pp. 76-81, 1992.
    R. C. Mason, "Parts Fabrication Processing Factors and Their Effects on Sintered Dielectric Tape Shrinkage for Low Temperature Cofired Ceramic Packages, " Proc. 1992 Int. Microelectronic Symposium, pp. 479-83, 1992.
    J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, "Low Temperature Co-Fired Tape Dielectric Material Systems for Multilayer Interconnections," Solid State Electronics, pp.97-101, January(1986).
    S. Nishigaki et al., "A New Low Temperature Firable Ag Multilayer Ceramic Having Post-Fired Cu Conductor(LFC-2)" Proc. 1986 Int. Symp. On Microelectronics, pp.429-49, 1986.
    K. Miura et al., "Characteristics of Low Temperature Firing Ceramic and Its Application to MCM", Int. J. Microcircuits and Elec. Packaging, 18[4] 336-42(1995).
    K. Ikuina, M. Kimura, K. Utsumi, S. Ohnagari, Y. Kosugi, and O. Yamamoto, "Glass-Ceramic Multichip Module for Satellite Microwave Communication System," Int. Microcircuit and Electronic Packaging, 18[4] 431-38 (1995).
    R. R. Tummala, A. H. Kumar, and P. W. McMillan. "Glass Ceramic Structures and Sintered Multilayer Substrates Thereof with Circuit Patterns of Gold, Silver, or Copper," U.S. Patent No. 4,301,324, 1981.
    G. Partridge, C. A. Elyard and M. I. Budd, in: Glass and Glass-Ceramics, p.226, ed. M. H. Lewis, Chapman and Hall, London, 1989.
    Y. Shimada, Y. Shiozawa, M. Suzuki, H. Takamizawa, and Y. Yamashita, "Low Dielectric Constant Multilayer Glass-ceramic Substrate Ag-Pd Wiring for VLSI Package," 36th Electronic Components Conference Proceedings, pp.395-405, 1984.
    C.A. Haper, in Electronic Package and Interconnection Handbook, McGraw-Hill, pp.1-90, New York, 2000.
    E. M. Rabinovich, "Ceramic Materials for Electronic packaging," J. Electron. Packag., III[Sept.]183-90 (1989).
    P. W. McMillan, Glass ceramics. Acadmemic Press, p.143,1979.
    T. Watari and H.Murano,"Package Technology for the NEC SX supercomputer," 37th Electronic Components Conference Proceeding, pp.192-205, 1985.
    Liam Devlin, Graham Pearson and Bob Hunt, in Low Cost RF and Microwave Components in LTCC," Proceedings of Micro Tech 2001, pp59-64, Jan.1 2001.
    M. Avrami, J. Chem. Phys. 7 (1939) 177.
    W. Johnson and A. F. Mehl, Trans. Am. Inst. Mining Metall. Eng. 35 (1939) 416.
    M. Avrami, J. Chem. Phys, 8 (1940) 212
    R. Melling and F. W. Wilbrun, R. M. Mcintosh, Anal. Chem. 41 (1969) 1275.
    P. Murray, J. White, Trans. Br. Ceram. Soc. 54 (1955) 204.
    E. C. Sewell, Clay Minerals Bul. 2 (1955) 233.
    H. E. Kissinger, "Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis," J. Res. Natl. Bur. Stand., 57[4] 217-21(1956).
    H. E. Kissinger, Anal Chem. 27 (1957) 1702.
    T. Ozawa, "Kinetics of Non-isothermal Crystallization," Polymer. 12 150-58(1971).
    J. A. Augis and J. E. Bennett, "Calculation of the Avrami Parameters for Heterogeneous Solid State Reaction Using A Modification of Kissinger Method,"J. Therm. Anal., 13 283-92(1978).
    K. G. Cheng, "Determining Crystallization Kinetic Parameters of Li2O-Al2O3-SiO2 Glass from Derivative Differential Thermal Analysis Curves," Mater. Sci. Eng. B60[3] 194-99 (1999).
    A. Mahadevan, A. Giridhar, and A. K. Singh," Calorimetric Measurements on As-Sb-Se Glasses," J. Non-Cryst. Solids. 88 [1] 11-34 (1986).
    X. J. J. Xu, C. S. Ray, and D.E. Day," Nucleation and Crystallization of Na2O-2CaO-3SiO2 Glass by Differential Thermal-Analysis," J. Am. Ceram. Soc., 74[5] 909-14 (1991).
    K. G. Cheng, J. L. Wan, K. M. Liang, " Isothermal DTA Study on Crystallization of Mica Composition-based Glass," J. Non-Cryst. Solids. 215[2-3] 134-39(1997).
    M. J. Vold, "Diffrential Thermal Analysis," J. Anal Chem. 21[6] 683-88(1949) .
    W. Vogel, Glass Chemistry, Springer, Berlin, pp.163, 1994.
    P. W. McMillan, in Glass-Ceramics, pp.421-52, Academic Press, London, 1964.
    "Water Absorption, Bulk Density, Apparent, and Apparent Specific Gravity of Fired Whiteware Products", American Society for Testing and Materials(ASTM), C373-88(1999).
    M. Tarou ,"Practical Measurement of Complex Permittivity of Microwave Dielectrics," Electron. Ceram., 24[9] 38-43(1993).
    B. W. Hakki and P. D. Coleman, IRE Trans.: Microwave Theory Tech., MTT-8 4023-26 (1960).
    T. Nishikawaet al, " Precise Measurement method for Complex Permittivity of Microwave Substrate," CPEM'88, pp.154-5,1988.
    K. Matusita and S. Sakka," Kinetic-Study on Crystallization of Glass by Differential Thermal-Analysis - Criterion on Application of Kissinger Plot," J. Non-Cryst. Solids. 38-9 741-46 (1980).
    A. W. A. El-Shennawi, M. M. Morsi, G. A. Khater, S. A. M. Abdelhamid," Thermodynamic Investigation of Crystallization Behaviour of Pyroxenic Basalt-based Glasses," J. Thermochim. Acta, 51[2] 553-60 (1998).
    K. Watanabe and E. A. Giess," Crystallization Kinetics of Hgh-Cordierite Glass," J. NonCryst. Solids, 169[3] 306-10 (1994).
    A. K. Varshneya, Fundamentals of Inorganic Glasses, p.61, Academic Press, London(1994).
    A. Marotta, A. Buri, F. Branda, "Nucleation in Glass and Differential Thermal-Analysis," J. Mater. Sci., 16[2] 341-44(1977).
    T. Wakusugi, L. Burgner, M. C. Weinberg, " A DTA Study of Crystal Nucleation in Na2O-SiO2 glasses," J. Non-Cryst. Solids, 244[1] 63-73(1999).
    C. S. Ray, W.H. Huang, D. E. Day, " Crystallization Kinetics of a Lithia Silica Glass-Effect of Sample Characteristics and Thermal-analysis Measurement Techniques," J. Am. Ceram. Soc., 74[1]60-66(1991).
    JCPDS Card No.78-2485 for TiO2, C. J. Howard, T. M. Dickson, Acta Crystallogr., Sec.B: Structural Science, 47 462-66(1991).
    JCPDS Card No.41-1486 for CaAlSi2O8, I. Sanc, Polytechna, Foreign Trade Corporation, Panska, Czechoslovakia, ICDD(1990).
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann in Introduction to Ceramics p.93, Wiley Interscience, 1976.
    J.E. Shelby, W. C. Lacourse, and A. G. Claire, in "Engineering Properties of Oxide Glasses and Other Inorganic Glasses, Engineered Materials Handbook, Volume 4: Ceramics and Glasses, p.845, S. J. Schneider, Technical Chairman, 1991.
    Z. Strand, in Glass-ceramic Materials, Glass Science and Technology, Vol. 8, p.105, Elsevier Science Publisters, 1995.
    Y. Kobayashi and E. Kato," Low-temperature Sintering of Porcelain in CaO-Al2O3-SiO2 system," J. Am. Ceram. Soc, 77[3] 833-36 (1994).
    S. M. Yan, M. F. Jose, "The Densification and Morphology of Cordierite-based Glass-ceramics", Materials Letters, 47 205-11 (2001).
    J. H. Jean and T. K. Gupta, "Devitrification Inhibitors in Borosilicate Glass and Binary Borosilicate Glass Composition", J. Mater. Res. 10[5] 1312-20 (1995).
    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, pp.947-50 in Introduction to Ceramics, 2nd Edn, John Willey & Sons, Inc., NY, 1975.
    K. Wakino, K. Minai, and H. Tamura, "Microwave Characteristic of (Zn, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonatoes," J. Am.Ceram. Soc., 64[4] 278-81(1984).
    A. K. Varshneya, pp.364-65 in Fundamentals of Inorganic Glasses, Harcourt Brace & Company, New York, 1994.
    W. Wersing, "High Frequency, Ceramic Dielectric and their Application for Microwave Components" pp. 67-119 in Electronic Ceramic, Edited by B. C. H. Steele. Elsevier, New York, 1991.
    R. J. Cava, "Dielectric Materials for Applications in Microwave Communications," J. Mater. Chem., 11 54-62(2001).
    W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd; pp. 947-53. wilwy, New York, 1976.
    G. Partridge, "A Review of Surface Crystallization in Vitreous systems," Glass Technol.", 28[1] 9-18 (1987).
    T. C. Patton, "Film Application," in Paint and Pigment Dispersion, p. 581, John Wiley and Sons, New York, 1979.
    Hausner, H.H.: In Sintering New Development, M.M. Ristic (ed.), Amsterdam: Elsevier Scientific Publishing Co., p.3, 1979.
    M. N. Rahaman, in Ceramic Processing and Sintering, p.392, Marcel Dekker, Inc., 1995.
    J. H. Rosolowski and J. E. Burke in Encyclopedia of Chemical Processing and Design, John J. McKetta(ed.), Chapter of Sintering, New York: Marcel Dekker, Inc., pp. 301–29, 1995.
    E. Ryshkewitch: Oxide Ceramics, Physical Chemistry and Technology, New York: Academic Press, pp. 44–67, 1960.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann in Introduction to Ceramics, p.476, Wiley Interscience, 1976.
    A. Dietzel, Z. Electrochem. 48, 9-23 (1942).
    P. F. James, in Nucleation and Crystallization in Glasses, Advanced in Ceramics, Vol. 4, ed. J. H. Simmons, D. R. Uhlmann and G. H. Beall, p.163, American Ceramics Society, Inc., Westerville, Ohio, USA, 1982.
    A. K. Varshneya in Fundamentals of Ionorganic Glass, p. 35. Academic Press, London, 1994.
    116C.L. Lo, J.G. Duh, B.S. Chiou, W. H. Lee, “Low Temperature Sintering and Microwave Dielectric Properties of Anorthite-based Glass-Ceramics”, J. American Ceramic Society, 85[9] 2230-2235 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE