簡易檢索 / 詳目顯示

研究生: 戰 媺
Chan, Mei
論文名稱: 為健康推薦系統產生和比較解釋之整合研究
Generating and Comparing Explanations for Health Lifestyle Recommender Systems: A Unified Study
指導教授: 徐茉莉
Shmueli, Galit
口試委員: 葛陵偉
Greene, Travis Wayne
雷松亞
Ray, Soumya
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 服務科學研究所
Institute of Service Science
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 54
中文關鍵詞: 推薦系統可解釋推薦系統機器學習
外文關鍵詞: recommender system, explainable recommender system, machine learning
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可解釋推薦系統旨在為使用者提供推薦,並提供這些推薦的解釋。透過闡明每個推薦背後的邏輯,可解釋系統可以增強使用者對推薦系統的信任、滿意度和決策能力。過往文獻中提出了不同的可解釋演算法,且每種演算法都執行在不同的資料集。這使得比較不同的解釋變得困難。此外,重現文獻中的結果也具挑戰性。
    本研究專注於為健康推薦系統產生和比較解釋。我們運用四種推薦系統在Amazon.com產品評論的單一資料集上。這四種方法分別為基於使用者的協同過濾(User-based collaborative filtering)、基於項目的協同過濾(Item-based collaborative filtering)、基於內容之推薦系統(Content-based recommender system)及基於圖像之推薦系統(Graph-based recommender system)。對於每種推薦系統,我們評估了四種解釋類型的適用性和影響:基於使用者之解釋、基於項目之解釋、基於特徵之解釋、反事實解釋。我們的目標為比較不同的解釋在健康推薦系統中的優點與缺點。我們的結果能幫助企業、使用者及研究人員更好地理解不同推薦系統之解釋的適用性。


    Explainable recommender systems aim to provide users with recommendations while also offering explanations for those recommendations. By clarifying the reasoning behind each recommendation, explainable systems enhance user trust, satisfaction, and decision-making. Different explanation algorithms have been proposed in the literature, each illustrating the method on a different dataset. This makes it difficult to compare the different explanations. Furthermore, reproducing the results reported in the literature proves challenging. In this research, we focus on generating and comparing various explanation types for recommender systems in the context of health lifestyle applications. We apply four recommendation techniques - user-based collaborative filtering, item-based collaborative filtering, content-based recommender system, and graph-based recommender system - to a single dataset consisting of product reviews on Amazon.com. For each technique, we examine the applicability and impact of four explanation types: user-based, item-based, feature-based, and counterfactual explanations. Our goal is to compare several of the proposed explanations in order to identify their advantages and disadvantages within the context of health lifestyle recommender systems. Our results should help recommender system designers, as well as users and researchers better understand the suitability of different recommendation explanations.

    Abstract (Chinese) I Abstract II Acknowledgements III Contents IV List of Figures VII List of Tables VIII 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Common recommender techniques . . . . . . . . . . . . . . . . . 3 2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . .. . . 4 2.1.2 Collaborative Filtering (CF) . . . . . . . . . . . . . . . . 5 2.1.3 Content-based recommender systems . . . . . . . . . . . . . . 6 2.1.4 Knowledge-based recommender systems . . . . . . . . . . . . . 6 2.1.5 Context-aware recommender systems . . . . . . . . . . . . . . 7 2.1.6 Graph-based recommender systems . . . . . . . . . . . . . . . 7 2.1.7 Multi-armed bandits . . . . . . . . . . . . . . . . . . . . 8 2.1.8 Markov decision process . . . . . . . . . . . . . . .. . . . 9 2.2 Recommender systems in health lifestyle applications . . .. . . 9 2.2.1 What is recommended . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Types of recommendation techniques . . . . . . . . . . . . . 10 2.2.3 Implication of explanation in health lifestyle domain . . . . 12 2.3 Explanation types . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 User-based explanation . . . . . . . . . . . . . . . . . . . 13 2.3.2 Item-based explanation . . . . . . . . . . . . . . . . . . . 14 2.3.3 Feature-based explanation . . . . . . . . . . . . . . . . . . 14 2.3.4 Counterfactual explanation . . . . . . . . . . . . . . . . . 16 2.4 Explanation format . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Visual explanation . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Textual explanation . . . . . . . . . . . . . . . . . . . . . 18 3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Criteria for choosing a dataset . . . . . . . . . . . . . . . . 20 3.2 Selected dataset . . . . . . . . . . . . . . . . . . . . . . . 21 4 Applying Recommendations and Explanations to the Amazon Dataset . 23 4.1 User-based Collaborative Filtering . . . . . . . . . . . . . . 24 4.1.1 Recommendation generation . . . . . . . . . . . . . . . . . . 24 4.1.2 Explanation generation . . . . . . . . . . . . . . . . . . . 25 4.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . .. . . . 27 4.2 Item-based Collaborative Filtering . . . . . . . . .. . . . . . 28 4.2.1 Recommendation generation . . . . . . . . . . . . . . . . . . 28 4.2.2 Explanation generation . . . . . . . . . . . . . . . . .. . . 29 4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . .. . . . 31 4.3 Content-based recommender system . . . . . . . . . . . . . . . 32 4.3.1 Recommendation generation . . . . . . . . . . . . . . . . . . 32 4.3.2 Explanation generation . . . . . . . . . . . . . . . .. . . . 34 4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . .. . . . . 36 4.4 Graph-based recommender system . . . . . . . . . . . .. . . . . 36 4.4.1 Recommendation generation . . . . . . . . . . . . . . . . . . 36 4.4.2 Explanation generation . . . . . . . . . . . . . . . . . . . 38 4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 Conclusions and Future work . . . . . . . . . . . . . . . . . . . 41 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Reference Entries with * are only cited in Table 5.2 . . . . . . . 46

    Abdollahi, B. and Nasraoui, O. (2016). Explainable matrix factorization for collaborative filtering. In Proceedings of the 25th International Conference Companion on World Wide Web, pages 5–6.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information systems (TOIS), 23(1):103–145.
    Adomavicius, G. and Tuzhilin, A. (2010). Context-aware recommender systems. In Recommender systems handbook, pages 217–253. Springer.
    Afsar, M. M., Crump, T., and Far, B. (2022). Reinforcement learning based recommender systems: A survey. ACM Computing Surveys, 55(7):1–38.
    Aggarwal, C. C. et al. (2016). Recommender systems, volume 1. Springer.
    Agner, L., Necyk, B., and Renzi, A. (2020). Recommendation systems and machine learning: Mapping the user experience. In Design, User Experience, and Usability. Design for Contemporary Interactive Environments: 9th International Conference, DUXU 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, July 19–24, 2020, Proceedings, Part II 22, pages 3–17. Springer.
    Ai, Q., Azizi, V., Chen, X., and Zhang, Y. (2018). Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms, 11(9):137.
    Ali, R., Afzal, M., Hussain, M., Ali, M., Siddiqi, M. H., Lee, S., and Kang, B. H. (2016). Multimodal hybrid reasoning methodology for personalized wellbeing services. Computers in biology and medicine, 69:10–28.
    Alyari, F. and Jafari Navimipour, N. (2018). Recommender systems: A systematic review of the state of the art literature and suggestions for future research. Kybernetes, 47(5):985–1017.
    Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine learning, 47:235–256.
    Balloccu, G., Boratto, L., Fenu, G., and Marras, M. (2023). Reinforcement recommendation reasoning through knowledge graphs for explanation path quality. Knowledge-Based Systems, 260:110098.
    Balog, K., Radlinski, F., and Arakelyan, S. (2019). Transparent, scrutable and explainable user models for personalized recommendation. In Proceedings of the 42nd international acm sigir conference on research and development in information retrieval, pages 265–274.
    Bilgic, M. and Mooney, R. J. (2005). Explaining recommendations: Satisfaction vs. promotion. In Beyond personalization workshop, IUI, volume 5, page 153.
    Bostandjiev, S., O’Donovan, J., and H¨ollerer, T. (2012). Tasteweights: a visual interactive hybrid recommender system. In Proceedings of the sixth ACM conference on Recommender systems, pages 35–42.
    Breese, J. S., Heckerman, D., and Kadie, C. (2013). Empirical analysis of predictive algorithms for collaborative filtering. arXiv preprint arXiv:1301.7363.
    Burke, R. (2000). Knowledge-based recommender systems. Encyclopedia of library and information systems, 69(Supplement 32):175–186.
    Burke, R. (2007). Hybrid web recommender systems. The adaptive web: methods and strategies of web personalization, pages 377–408.
    Catherine, R., Mazaitis, K., Eskenazi, M., and Cohen, W. (2017). Explainable entity-based recommendations with knowledge graphs. arXiv preprint arXiv:1707.05254.
    Chen, J., Houston, T. K., Faro, J. M., Nagawa, C. S., Orvek, E. A., Blok, A. C., Allison, J. J., Person, S. D., Smith, B. M., and Sadasivam, R. S. (2021). Evaluating the use of a recommender system for selecting optimal messages for smoking cessation: patterns and effects of user-system engagement. BMC public health, 21:1–13.
    Chen, X., Chen, H., Xu, H., Zhang, Y., Cao, Y., Qin, Z., and Zha, H. (2019). Personalized fashion recommendation with visual explanations based on multimodal attention network: Towards visually explainable recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 765–774.
    Chen, X., Xu, H., Zhang, Y., Tang, J., Cao, Y., Qin, Z., and Zha, H. (2018). Sequential recommendation with user memory networks. In Proceedings of the eleventh ACM international conference on web search and data mining, pages 108–116.
    Chen, Z., Silvestri, F., Wang, J., Zhang, Y., and Tolomei, G. (2023). The dark side of explanations: Poisoning recommender systems with counterfactual examples. In Proceedings of the 46th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 2426–2430.
    Cheng, W., Shen, Y., Huang, L., and Zhu, Y. (2019). Incorporating interpretability into latent factor models via fast influence analysis. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 885–893.
    Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., and Riedl, J. (2003). Is seeing believing? how recommender system interfaces affect users’ opinions. In Proceedings of the SIGCHI conference on Human factors in computing systems, pages 585–592.
    Cramer, H., Evers, V., Ramlal, S., Van Someren, M., Rutledge, L., Stash, N., Aroyo, L., and Wielinga, B. (2008). The effects of transparency on trust in and acceptance of a content-based art recommender. User Modeling and Useradapted interaction, 18:455–496.
    Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., et al. (2010). The youtube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems, pages 293–296.
    De Croon, R., Van Houdt, L., Htun, N. N., ˇStiglic, G., Abeele, V. V., Verbert, K., et al. (2021). Health recommender systems: systematic review. Journal of Medical Internet Research, 23(6):e18035.
    Fano, A. and Kurth, S. W. (2003). Personal choice point: helping users visualize what it means to buy a bmw. In Proceedings of the 8th international conference on Intelligent user interfaces, pages 46–52.
    Felfernig, A., Friedrich, G., Jannach, D., and Zanker, M. (2006). An integrated environment for the development of knowledge-based recommender applications. International Journal of Electronic Commerce, 11(2):11–34.
    Felfernig, A., Le, V.-M., Popescu, A., Uta, M., Tran, T. N. T., and Atas, M. (2021). An overview of recommender systems and machine learning in feature modeling and configuration. In Proceedings of the 15th International Working Conference on Variability Modelling of Software-Intensive Systems, pages 1–8.
    Gedikli, F., Jannach, D., and Ge, M. (2014). How should i explain? a comparison of different explanation types for recommender systems. International Journal of Human-Computer Studies, 72(4):367–382.
    Ghazimatin, A., Balalau, O., Saha Roy, R., and Weikum, G. (2020). Prince: Provider-side interpretability with counterfactual explanations in recommender systems. In Proceedings of the 13th International Conference on Web Search and Data Mining, pages 196–204.
    Gopalan, K. S., Nathan, S., CH, B. T., Channa, A. B., and Saraf, P. (2011). A context aware personalized media recommendation system: an adaptive evolutionary algorithm approach. In 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications, pages 45–50. IEEE.
    Greene, T., Shmueli, G., and Ray, S. (2023). Taking the person seriously: Ethically aware is research in the era of reinforcement learning-based personalization. Journal of the Association for Information Systems, 24(6):1527–1561.
    He, X., Chen, T., Kan, M.-Y., and Chen, X. (2015). Trirank: Review-aware explainable recommendation by modeling aspects. In Proceedings of the 24th ACM international on conference on information and knowledge management, pages 1661–1670.
    Heckel, R., Vlachos, M., Parnell, T., and D¨unner, C. (2017). Scalable and interpretable product recommendations via overlapping co- clustering. In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages 1033–1044. IEEE.
    Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering recommendations. In Proceedings of the 2000 ACM conference on Computer supported cooperative work, pages 241–250.
    Hidalgo, J. I., Maqueda, E., Risco-Mart´ın, J. L., Cuesta-Infante, A., Colmenar, J. M., and Nobel, J. (2014). glucmodel: A monitoring and modeling system for chronic diseases applied to diabetes. Journal of biomedical informatics, 48:183–192.
    Hou, Y., Mu, S., Zhao, W. X., Li, Y., Ding, B., and Wen, J.-R. (2022). Towards universal sequence representation learning for recommender systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 585–593.
    Huang, J., Zhao, W. X., Dou, H., Wen, J.-R., and Chang, E. Y. (2018). Improving sequential recommendation with knowledge-enhanced memory networks. In The 41st international ACM SIGIR conference on research & development in information retrieval, pages 505–514.
    Huang, L., Fu, M., Li, F., Qu, H., Liu, Y., and Chen, W. (2021). A deep reinforcement learning based long-term recommender system. Knowledge-Based Systems, 213:106706.
    Kouki, P., Schaffer, J., Pujara, J., O’Donovan, J., and Getoor, L. (2020). Generating and understanding personalized explanations in hybrid recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 10(4):1–40.
    Kumar, G., Jerbi, H., Gurrin, C., and O’Mahony, M. P. (2014). Towards activity recommendation from lifelogs. In Proceedings of the 16th international conference on information integration and web-based applications & services, pages 87–96.
    Lai, T. L. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22.
    Li, L., Zhang, Y., and Chen, L. (2020). Generate neural template explanations for recommendation. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pages 755–764.
    Li, P., Wang, Z., Ren, Z., Bing, L., and Lam, W. (2017). Neural rating regression with abstractive tips generation for recommendation. In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 345–354.
    Lin, Y., Jessurun, J., De Vries, B., and Timmermans, H. (2011). Motivate: Towards context-aware recommendation mobile system for healthy living. In 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pages 250–253. IEEE.
    Lu, H., Ma, W., Wang, Y., Zhang, M., Wang, X., Liu, Y., Chua, T.-S., and Ma, S. (2023). User perception of recommendation explanation: Are your explanations what users need? ACM Transactions on Information Systems, 41(2):1–31.
    Marlin, B. M., Adams, R. J., Sadasivam, R., and Houston, T. K. (2013). Towards collaborative filtering recommender systems for tailored health communications. In AMIA annual symposium proceedings, volume 2013, page 1600. American Medical Informatics Association.
    Martens, D. and Provost, F. (2014). Explaining data-driven document classifications. MIS quarterly, 38(1):73–100.
    McAuley, J. and Leskovec, J. (2013). Hidden factors and hidden topics: understanding rating dimensions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pages 165–172.
    McInerney, J., Lacker, B., Hansen, S., Higley, K., Bouchard, H., Gruson, A., and Mehrotra, R. (2018). Explore, exploit, and explain: personalizing explainable recommendations with bandits. In Proceedings of the 12th ACM conference on recommender systems, pages 31–39.
    Molnar, C. (2020). Interpretable machine learning. Lulu. com.
    Mooney, R. J. and Roy, L. (2000). Content-based book recommending using learning for text categorization. In Proceedings of the fifth ACM conference on Digital libraries, pages 195–204.
    Narayanan, A. and Shmatikov, V. (2006). How to break anonymity of the netflix prize dataset. arXiv preprint cs/0610105.
    Ni, J., Li, J., and McAuley, J. (2019). Justifying recommendations using distantlylabeled reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pages 188–197.
    Nikolakopoulos, A. N., Ning, X., Desrosiers, C., and Karypis, G. (2021). Trust your neighbors: A comprehensive survey of neighborhood-based methods for recommender systems. Recommender systems handbook, pages 39–89.
    Park, H., Jeon, H., Kim, J., Ahn, B., and Kang, U. (2017). Uniwalk: Explainable and accurate recommendation for rating and network data. arXiv preprint arXiv:1710.07134.
    Peake, G. and Wang, J. (2018). Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2060–2069.
    Pennock, D. M., Horvitz, E. J., Lawrence, S., and Giles, C. L. (2013). Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. arXiv preprint arXiv:1301.3885.
    Pincay, J., Ter´an, L., and Portmann, E. (2019). Health recommender systems: a state-of-the-art review. In 2019 Sixth International Conference on eDemocracy & eGovernment (ICEDEG), pages 47–55. IEEE.
    Pop, C. B., Chifu, V. R., Salomie, I., Cozac, A., and Mesaros, I. (2013). Particle swarm optimization-based method for generating healthy lifestyle recommendations. In 2013 IEEE 9th International Conference on Intelligent Computer Communication and Processing (ICCP), pages 15–21. IEEE.
    Rabbi, M., Aung, M. H., Zhang, M., and Choudhury, T. (2015). Mybehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing, pages 707–718.
    Ren, Z., Liang, S., Li, P., Wang, S., and de Rijke, M. (2017). Social collaborative viewpoint regression with explainable recommendations. In Proceedings of the tenth ACM international conference on web search and data mining, pages 485–494.
    Ricci, F., Rokach, L., and Shapira, B. (2021). Recommender systems: Techniques, applications, and challenges. Recommender systems handbook, pages 1–35.
    Sadasivam, R. S., Borglund, E. M., Adams, R., Marlin, B. M., and Houston, T. K. (2016). Impact of a collective intelligence tailored messaging system on smoking cessation: the perspect randomized experiment. Journal of medical Internet research, 18(11):e285.
    Sassi, I. B., Mellouli, S., and Yahia, S. B. (2017). Context-aware recommender systems in mobile environment: On the road of future research. Information Systems, 72:27–61.
    Seo, S., Huang, J., Yang, H., and Liu, Y. (2017). Interpretable convolutional neural networks with dual local and global attention for review rating prediction. In Proceedings of the eleventh ACM conference on recommender systems, pages 297–305.
    Shams, B. and Haratizadeh, S. (2017). Graph-based collaborative ranking. Expert Systems with Applications, 67:59–70.
    Shani, G., Heckerman, D., Brafman, R. I., and Boutilier, C. (2005). An mdp-based recommender system. Journal of machine Learning research, 6(9).
    Sharma, A. and Cosley, D. (2013). Do social explanations work? studying and modeling the effects of social explanations in recommender systems. In Proceedings of the 22nd international conference on World Wide Web, pages 1133–1144.
    Shmueli, G., Bruce, P. C., Deokar, K. R., and Patel, N. R. (2023). Machine learning for business analytics: Concepts, techniques, and applications with analytic solver data mining. John Wiley & Sons.
    Silva, N., Werneck, H., Silva, T., Pereira, A. C., and Rocha, L. (2022). Multiarmed bandits in recommendation systems: A survey of the state-of-the-art and future directions. Expert Systems with Applications, 197:116669.
    Son, J. and Kim, S. B. (2017). Content-based filtering for recommendation systems using multiattribute networks. Expert Systems with Applications, 89:404–412.
    Suhaim, A. B. and Berri, J. (2021). Context-aware recommender systems for social networks: review, challenges and opportunities. IEEE Access, 9:57440–57463.
    Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., and Zhang, Y. (2021). Counterfactual explainable recommendation. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pages 1784–1793.
    Tintarev, N. and Masthoff, J. (2007). Effective explanations of recommendations: user-centered design. In Proceedings of the 2007 ACM conference on Recommender systems, pages 153–156.
    Tintarev, N. and Masthoff, J. (2012). Evaluating the effectiveness of explanations for recommender systems: Methodological issues and empirical studies on the impact of personalization. User Modeling and User-Adapted Interaction, 22:399–439.
    Tintarev, N. and Masthoff, J. (2015). Explaining recommendations: Design and evaluation. In Recommender systems handbook, pages 353–382. Springer.
    Toulmin, S. E. (2003). The uses of argument. Cambridge university press.
    Tran, K. H., Ghazimatin, A., and Saha Roy, R. (2021). Counterfactual explanations for neural recommenders. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1627–1631.
    Vahidi Ferdousi, Z., Colazzo, D., and Negre, E. (2018). Cbpf: leveraging context and content information for better recommendations. In Advanced Data Mining and Applications: 14th International Conference, ADMA 2018, Nanjing, China, November 16–18, 2018, Proceedings 14, pages 381–391. Springer.
    Vig, J., Sen, S., and Riedl, J. (2009). Tagsplanations: explaining recommendations using tags. In Proceedings of the 14th international conference on Intelligent user interfaces, pages 47–56.
    Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841.
    Wang, H., Wu, Q., and Wang, H. (2017). Factorization bandits for interactive recommendation.
    In Proceedings of the AAAI Conference on Artificial Intelligence,
    volume 31.
    Wang, N., Wang, H., Jia, Y., and Yin, Y. (2018). Explainable recommendation via multi-task learning in opinionated text data. In The 41st international ACM SIGIR conference on research & development in information retrieval, pages 165–174.
    Wang, X., Chen, Y., Yang, J., Wu, L., Wu, Z., and Xie, X. (2018). A reinforcement learning framework for explainable recommendation. In 2018 IEEE international conference on data mining (ICDM), pages 587–596. IEEE.
    Wang, Z., Huang, H., Cui, L., Chen, J., An, J., Duan, H., Ge, H., Deng, N., et al. (2020). Using natural language processing techniques to provide personalized educational materials for chronic disease patients in china: development and assessment of a knowledge-based health recommender system. JMIR medical informatics, 8(4):e17642.
    Wang, Z., Zhang, J., Xu, H., Chen, X., Zhang, Y., Zhao, W. X., and Wen, J.-R. (2021). Counterfactual data-augmented sequential recommendation. In Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, pages 347–356.
    Wu, Q., Wang, H., Gu, Q., and Wang, H. (2016). Contextual bandits in a collaborative environment. In Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages 529–538.
    Wu, Y. and Ester, M. (2015). Flame: A probabilistic model combining aspect based opinion mining and collaborative filtering. In Proceedings of the eighth ACM international conference on web search and data mining, pages 199–208.
    Xiang, L., Yuan, Q., Zhao, S., Chen, L., Zhang, X., Yang, Q., and Sun, J. (2010). Temporal recommendation on graphs via long-and short-term preference fusion. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 723–732.
    Xu, S., Ge, Y., Li, Y., Fu, Z., Chen, X., and Zhang, Y. (2023). Causal collaborative filtering. In Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval, pages 235–245.
    Yang, Z., Wu, B., Zheng, K., Wang, X., and Lei, L. (2016). A survey of collaborative filtering-based recommender systems for mobile internet applications. IEEE Access, 4:3273–3287.
    Zhang, Y. (2015). Incorporating phrase-level sentiment analysis on textual reviews for personalized recommendation. In Proceedings of the eighth ACM international conference on web search and data mining, pages 435–440.
    Zhang, Y., Chen, X., et al. (2020). Explainable recommendation: A survey and new perspectives. Foundations and Trends® in Information Retrieval, 14(1):1–101.
    Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., and Ma, S. (2014). Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval, pages 83–92.
    Zhang, Z.-K., Zhou, T., and Zhang, Y.-C. (2010). Personalized recommendation via integrated diffusion on user–item–tag tripartite graphs. Physica A: Statistical Mechanics and its Applications, 389(1):179–186.
    Zhou, W. and Han, W. (2019). Personalized recommendation via user preference matching. Information Processing & Management, 56(3):955–968.

    QR CODE