研究生: |
辛正倫 Cheng-Lun Hsin |
---|---|
論文名稱: |
矽、金屬矽化物及氧化銦奈米結構之研究 Investigation on Si, Metal Silicide and Indium Oxide Nanostructures |
指導教授: |
陳力俊
Lih-Juann Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 矽 、矽化物 、氧化銦 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究論文摘要
第一部份,透過場發射掃描式電子顯微鏡內建多探針操作系統,我們成功地定性定量分析單根矽奈米線的機械性質,觀測材料在奈米尺度下所展現出與巨觀塊材差異的特性。奈米線具有異常的韌性及可撓性,其可承受應變量遠超過塊材值,此部份實驗值與理論計算值相吻合,然而矽奈米線之彈性模量值與塊材相當,並未改變,唯彈性常數值大幅下降,但即使在大範圍位移之下,其彈性常數值並未改變。
透過臨場觀測超高真空穿透式電子顯微鏡,我們觀察到鈦矽化物奈米柱在矽鍵結雙晶表面上之成長動力學。在矽鍵結雙晶表面上差排間距小時,成長之奈米柱受到應力場的影響,呈現階梯式的成長,且奈米柱之外形受到應力場局限,然而在差排間距大時,則無法觀測到奈米柱階梯式的成長。
我們成長出氧化矽包覆之鈷矽化物奈米電鑬,並詳細討論其耐熱性及電性。在耐熱性方面,其相較於單純鈷矽化物奈米線,其耐熱可承受溫度可增加500 ℃以上,在電性實驗方面結果證明出晶格缺陷對電阻率的影響,相較於晶格缺陷較高的薄膜而言,其電阻率較低,但比毫無缺陷理論值略高。
第二部份,我們專門討論氧化銦奈米結構合成製作、改質及其特性分析。其中包含了下面四個主題: (1)利用化學氣相沉積法在一高溫化學沉積爐內,來合成高品質氧化銦奈米結構,(2)利用氣-液-固相變化成長方式,利用催化劑促使奈米線的成長,成長出來的氧化銦奈米線具有適當的化學組成成份及結構,透過其他雷射激發,氧化銦奈米線發出的光趨近單色,且可以發出紫外光線,並利用調控鋅(Zn)的有效摻雜,可使原發出的紫外光改發出可見光--綠光,達到氧化銦奈米線光致螢光特性調變的目的,使奈米線的發光特性有與日後光電產業結合的可能性,(3) 矽基材上首先製做出高密度、具有優選方向性的氧化銦奈米環結構,並探討其可見光吸收光譜及螢光放光光譜等光學性質,(4)利用製程步驟的操控,首次在矽基材上合成出自組裝p型氧化銦奈米線陣列,再利用奈米線陣列結構製做出場效應電晶體,量測電學性質,同時利用離子佈植法植入不同濃度氮離子加以調控奈米線之電阻率。
ABSTRACT
PART Ⅰ Si and Silicide Nanostructures
The mechanical properties of single Si nanowire has been investigated. These nanowires showed anomalous flexibility and toughness. The strain of the nanowires was calculated and simulated (>1.5%) to be much higher than the bulk value (<0.2%). Under large deformation of the buckling effect, the spring constant was much lower (~10-4) due to the geometry but the elastic modulus of the nanowire would maintain the same value of the bulk elastic modulus. This result clarified the influence of the nano-sized effect. Meanwhile, the heat endurance and electric property of the cobalt silicide nanocable has been measured. The heat endurance of the nanocable was raised up to 900 ℃, which is 500 ℃ more than that of the nanowire. The nanocable shows that the resistivity could be better than the thin film due to the high quality crystallinity and structure.
By Si wafer bonding, Si bicrystal can be formed with different kinds of dislocation arrays. One-dimensional dislocation array can be formed by (001)Si and (110), (111)Si wafer bonding. The dislocation array would confine the shape of the nickel nanosilicide when the distance of the dislocation array is relatively short (<10 nm). In the in situ observation in ultrahigh vacuum transmission electron microscope, the stepwise growth of the silicide nanorod was observed for the first time. The presence of the dislocation line (d~3.1nm) would confine the shape of the silicide nanorod.
PART Ⅱ In2O3 Nanostructures
Two kinds of the In2O3 nanostructures were synthesized for the first time. The position control of the growth of the nanorings was conducted in conjunction with polystyrene spheres. The absorption and emission peak of the nanorings were at 600 and 620 nm in wavelength. The growth of In2O3 nanowires with different zinc doping levels in the vacuum furnace by a vapor transport and condensation method has been conducted. The ultraviolet peak is attributed to the transition of electrons from oxygen vacancy energy level near the electron band edge to the valence band. The green light emission, on the other hand, is ascribed to the radaitve emission between oxygen vacancy and zinc impurity energy levels. Similar tuning by other impurities can be expected and will be beneficial for possible optoelectronic applications. In addition, laterally self-aligned In2O3 nanowire and nanorod arrays on Si substrate were synthesized for the first time. The orientation relationships between the nanowires and the substrates are In2O3(111)[2 ] || Si(001)[110]. The In2O3 nanowire was found to be p-type semiconductor and the electric conductivity of the nanowire was tuned by nitrogen doping by ion implantation.
References
Chapter 1
1 P. M. Zeitzoff, “2007 International Techology Roadmap: MOSFET Scalling Challenges,” Solid State Tech. 51, 35-37 (2007)
2 D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures - The Quantum-Confined Stark-Effect,” Phys. Rev. Lett. 53, 2173-2176 (1984).
3 A. P. Alivisatos, A. L. Harris, N. J. Steigerwald, and L. E. Brus, “Electronic states of Semiconductor Clusters: Homogeneous and Inhomogeneous Broadening of the Optical Spectrum,” J. Chem. Phys. 89, 4001-4011 (1988).
4 G. A. Breaux, R. C. Benirschke, T. Sugai, B. S. Kinnear and M. F. Jarrold, “Hot and Solid Gallium Clusters: Too Small to Melt,” Phys. Rev. Lett. 91, 215508-1-4 (2003).
5 G. A. Breaux, C. M. Neal, B. Cao and M. F. Jarrold, “Melting, Premelting, and Structural Transitions in Size-Selected Aluminum Clusters with Around 55 Atoms,” Phys. Rev. Lett. 94, 173401-1-4 (2005).
6 M. F. Yu, B. F. Files, S. Arepalli and R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties,” Phys. Rev. Lett. 84, 5552-5555 (1976).
7 J.Y. Huang, X.D. Wang and Z.L. Wang, “Controlled Replication of Butterfly Wings for Achieving Tunable Photonic Properties,” Nano Lett. 6, 2325-2331 (2006).
8 (a)http://www.webelements.com/ and (b)http://en.wikipedia.org/wiki/Indium_oxide
Chapter 2
1 M. A. Herman and H. Sitter, “Molecular Beam Epitaxy: Fundamentals and Current Status Sringer, Berlin” (1996).
2 A. P. Alivisatos, “Electrical Studies of Semiconductor-Nanocrystal Colloids,” MRS Bull. 2, 18-23 (1998).
3 V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. K. Eisler and M. G. Bawendi, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science 290, 314-317 (2000).
4 S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, 56-58 (1991).
5 Z. L. Wang, “Nanowires and Nanobelts: Materials, Properties and Devices, Kluwer Academic Publishers, Boston,” (2003).
6 N. Hamada, S. Sawada and A. Oshiyama, “New One-Dimensional Conductors-Graphitic Microtubules,” Phys. Rev. Lett. 68, 1579-1581 (1992).
7 S. Bandow, K. Hirahara, T. Hiraoka, G. Chen, P. C. Eklund and S. Iijima, “Turning Peapods into Double-Walled Carbon Nanotubes,” MRS Bull. 29, 260-264 (2004).
8 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
9 H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng and B. Y. Zhu, “Synthesis of Hierarchical Superstructures Consisting of BaCrO4 Nanobelts in Catanionic Reverse Micelles,” Adv. Mater. 15, 1647-1651 (2003).
10 C. Ma, D. Moore, J. Li and Z. L. Wang, “Nanobelts, Nanocombs and Nano-windmills of Wurtzite ZnS,” Adv. Mater. 15, 228-231 (2003).
11 C. Ma, Y. Ding, D. Moore, X. D. Wang and Z. L. Wang, “Single-Crystal CdSe Nanosaws,” J. Am. Chem. Soc. 126, 708-709 (2004).
12 X. Xiang, C. B. Cao and H. Zhu, “Catalytic Synthesis of Single-Crystalline Gallium Nitride Nanobelts,” Solid State Commu. 126, 315-318 (2003).
13 H. W. Seo, S. Y. Bae, J. Park, H. Yang, M. Kang, S. Kim, J. C. Park and S. Y. Lee, “Nitrogen-Doped Gallium Phosphide Nanobelts,” Appl. Phys. Lett. 82, 3752-3754 (2003).
14 Q. Wu, Z. Hu, X. Z. Wang, Y. Chen and Y. N. Lu, “ Synthesis and Optical Characterization of Aluminum Nitride Nanobelts,“ J. Phys. Chem. B 107, 9726-9729 (2003).
15 S. M. Arnold and S. E. Kounce, “Filamentary Growths on Metals at Elevated Temperatures,” J. Appl. Phys. 27, 964-965 (1956).
16 R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89 (1964).
17 F. C. Frank, “The Influence of Dislocations on Crystal Growth,” Discuss. Faraday Soc. 5, 48-54 (1949).
18 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater. 15, 353 (2003).
19 P. D. Yang, Y. Y. Wu and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nanosci. 1, 1-39 (2002).
20 Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Func. Mater. 13, 9-24 (2003).
21 Y. Wu and P. D. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165 (2001).
22 S. Kodambaka, J. Tersoff, M. C. Reuter and F. M. Ross, “Germanium Nanowire Growth Below the Eutectic Temperature,” Science 316, 729-732 (2007).
Chapter 4
1 Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science. 291, 851-853 (2001).
2 P. Starowicz, O. Gallus, Th. Pillo and Y. Baer, “Size Effects in Photoemission of One-Dimensional Metals,” Phys. Rev. Lett. 89, 256402-1-4 (2002).
3 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science. 292, 1897-1899 (2001).
4 X. D. Wang, C. J. Summers and Z. L. Wang, “Large-Scale Hexagonal-Patterned
Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett. 4, 423-426 (2004).
5 Y. Zhang, A. Kolmakov, S. Chretien, H. Metiu and M. Moskovits, “Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating Electron Density Inside It,” Nano Lett. 4, 403-407 (2004).
6 V. Marotta, S. Orlando, G. P. Parisi and A. Giardini, “Sensors Based on Pulsed Laser Deposition of Multilayers of Metal Oxides,” Appl. Surf. Sci. 154-155, 640-646 (2000).
7 C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. Zhou, “In2O3 Nanowires as Chemical Sensors,” Appl. Phys. Lett. 82, 1613-1615 (2003).
8 Y. Shigesato, S. Takaki and T. Haranoh, “Electrical and Structural Properties of Low Resistivity Tin-doped Indium Oxide Films,” J. Appl. Phys. 71, 3356-3364 (1992).
9 I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 Films: Basic Optical Properties and Applications to Energy-efficient Windows” J. Appl. Phys. 60, R123-R159 (1986).
10 B. Lei, C. Li, D. H. Zhang, Q. F. Zhou, K. K. Shung and C. Zhou, “Nanowire Transistors with Ferroelectric Gate Dielectrics: Enhanced Performance and Memory Effects,” Appl. Phys. Lett. 84, 4553-4555 (2004).
11 J. Zhang , X. Qing, F. H. Jiang and Z. H. Dai, “A Route to Ag-catalyzed Growth of the Semiconducting In2O3 Nanowires,” Chem. Phys. Lett. 371, 311-316(2003).
12 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science. 291, 1947-1949 (2001).
13 C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp and L. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Adv. Mater. 13, 1330-1333 (2001).
14 K. Soulantica, L. Eraes, M. Sauvan, F. Senocq, A. Maisonnat and B. Chaubret, “Synthesis of Indium and Indium Oxide Nanoparticles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing,” Adv. Funct. Mater. 13, 153-157 (2003).
15 Y. B. Li, Y. Bando and D. Golberg, “Single-crystalline In2O3 Nanotubes filled with In,” Adv. Mater. 15, 581-585 (2003).
16 Y. Zhang, H. B. Jia, D. P. Yu, X. H. Luo, Z. S. Zhang and X. H. Chen, “Shape-controllable Synthesis of Indium Oxide Structures: Nanopyramids and Nanorods,” J. Mater. Res. 18, 2793-2798 (2003).
17 A. P. Levitt (ed.), Whisker Technology (Wiley-Interscience, New York, 1970).
18 Z. L. Wang, “Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies,” J. Phys. Chem. B. 104, 1153-1175 (2000).
19 Y. C. Zhu, Y. Bando, D. F. Xue and D. Golberg, “Nanocable-Aligned ZnS Tetrapod Nanocrystals,” J. Am. Chem. Soc. 125, 16196-16197 (2003).
20 J. Y. Lao, J. Y. Huang, D. Z. Wang and Z. F. Ren, “Self-assembled In2O3 Nanocrystal Chains and Nanowire Networks,” Adv. Mater. 16, 65-69 (2004).
21 J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo and Z. F. Ren, “Self-assembly of Semiconducting Oxide Nanowires, Nanorods, and Nanoribbons,” Chem. Phys. Lett. 372, 717-722 (2003).
Chapter 5
1 R. J. Warburton. C. Schaflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld and P. M. Petroff, “Optical Emission from a Charge-tunable Quantum Ring,” Nature 406, 926-929 (2000).
2 Y. B. Zheng, S. J, Wang, A. C. H. Huan and Y. H. Wang, “Fabrication of Large Area Ordered Metal Nanoring Arrays for Nanoscale Optical Sensors,” J. Non-Cryst. Solids. 352, 2532-2535 (2006).
3 M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, “Nanoring as a Magnetic or Electric Field Sensitive Nano-antenna for Near-field Optics Applications,” Optics Commu. 270, 447-454 (2007).
4 T. Y. Zhang and J. C. Cao, “Optical Absorption in Semiconductor Nanorings Under a Lateral Terahertz Electric Field,” Appl. Phys. Lett. 97, 024307-1-3 (2005).
5 H. Pan and J. L. Zhu, “Impurity Effects on Energy Levels and Far-infrared Spectra of Nanorings,” J. Phys.: Condens. Matter. 15, 7287-7295 (2003).
6 K. A. Matveev, A. I. Larkin and L. I. Glazman, “Persistent Current in Superconducting Nanorings,” Phys, Rev. Lett. 89, 096802-1-4 (2002).
7 X. G. Guo and J. C. Cao, “Electro-optic Interband Excitonic Absorption of Nanoring Double Quantum Wells,” J. Appl. Phys. 100, 083112-1-4 (2006).
8 E. M. Larsson, J. Alegret, M. Kall and D. S. Sutherland, “Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications,” Nano. Lett. 7, 1256-1263 (2007).
9 F. Q. Sun, J. C. Yu and X. C. Wang, “Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications,” Chem. Mater. 18, 3773-3779 (2006).
10 D. D. Jia and A. Goonewardene, “Two-dimensional Nanotriangle and Nanoring Arrays on Silicon Wafer,” Appl. Phys. Lett. 88, 053105-1-3 (2006).
11 K. L. Hobbs, P. R. Larson, G. D. Lian, J. C. Keay and M. B. Johnson, “Fabrication of Nanoring Arrays by Sputter Redeposition Using Porous Alumina Templates,” Nano. Lett. 4, 167-171 (2004).
12 S. Y. Zhao, H. Roberge, A. Yelon and T. Veres, “New Application of AAO Template: A Mold for Nanoring and Nanocone Arrays,” J. Am. Chem. Soc, 128, 12352-12353 (2006).
13 K. Prabhakaran, F. Meneau, G. Sankar, K. Sumitomo, T. Murasgita, Y. Homma, G. N. Greaves and T. Ogino, “Luminescent Nanoring Structures on Silicon,” Adv. Mater. 15, 1522-1526 (2003).
14 D. Jones, V. Palermo and A. Parisini, “Comment on “Luminescent Nanoring Structures on Silicon”,” Adv. Mater. 16, 1493-1494 (2004).
15 K. Prabhakaran, F. Meneau, T. Murasgita, G. N. Greaves, G. Sankar, Y. Homma and T. Ogino, “Reply to “Comment on Luminescent Nanoring Structures on Silicon”,” Adv. Mater. 16, 1495-1496 (2004).
16 W. L. Zhou, J. B. He, J. Fang, T. A. Huynh, T. J. Kennedy, K. L. Stokes and C. J. O’Connor, “Self-assembly of FePt Nanoparticles into Nanorings,” Appl. Phys. Lett. 93, 7340-7342 (2003).
17 X. Y. Kong, Y. Ding, R. S. Yang and Z. L. Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,” Science 303, 1348-1351 (2004).
18 R. S. Yang and Z. L. Wang, “Springs, Rings, and Spirals of Rutile-Structured Tin Oxide Nanobelts,” J. Am. Chem. Soc, 128, 1466-1467 (2006).
19 R. Ji, W. Lee, R. Scholz, U. Gosele and K. Nielsch, “Templated Fabrication of Nanowire and Nanoring Arrays Based on Interference Lithography and Electrochemical Deposition,” Adv. Mater. 18, 2593-2596 (2006).
20 N. Jiang, G. G. Hembree, J. C. H. Spence, J. Qiu, F. J. Garcia de Abajo and J. Silcox, “Nanoring Formation by Direct-write Inorganic Electron-beam Lithography,” Appl. Phys. Lett. 83, 551-553 (2003).
21 S. W. Lee, L. J. Chen, P. S. Chen, M. -J. Tsai, C. W. Liu, T. Y. Chien and C. T. Chia, “Self-assembled Nanorings in Si-capped Ge Quantum Dots on (001) Si,” Appl. Phys. Lett. 83, 5283-5285 (2003).
22 C. L. Hsin, J. H. He and L. J. Chen, “Modulation of Photoemission Spectra of In2O3 Nanowires by the Variation in Zn Doping Level,” Appl. Phys. Lett. 88, 063111-1-3 (2006).
23 D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei and C. W. Zhou, “Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices,” Nano. Lett. 4, 1919-1924 (2004).
24 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
25 C. L. Hsin, J. H. He and L. J. Chen, “Growth of In2O3 Nanocrystal Chains by a Vapor Transport and Condensation Method,” Appl. Surf. Sci. 244, 101-106 (2005).
26 C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp and L. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Adv. Mater. 13, 1330-1333 (2001).
27 C. L. Hsin, J. H. He, C. Y. Lee, W. W. Wu, P. H. Yeh, L. J. Chen and Z. L. Wang, “Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates,” Nano. Lett. 7, 1799-1803 (2007).
28 H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18, 505305-1-5 (2007).
29 J. Zhang, X. Qing, F. H. Jiang and Z. H. Dai, “A Route to Ag-catalyzed Growth of the Semiconducting In2O3 Nanowires,” Chem. Phys. Lett. 371, 311-316 (2003).
30 Y. B. Li, Y. Bando and D. Golberg, “Single-Crystalline In2O3 Nanorubes Filled with In,” Adv. Mater. 15, 581-585 (2003).
Chapter 6
1 X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2000)
2 R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires,” Adv. Mater. 15, 635-640 (2003)
3 W. I. Park and G. C. Yi, “Electroluminescence in n-Zno Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16, 87-90 (2004)
4 C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai and C. G. Zhou, “Chemical Gating of In2O3 Nanowires by Organic and Biomolecules,” Appl. Phys. Lett, 83, 4014-4016 (2003)
5 D. H. Zhang, C. Li, S. Han, X. L. Liu, T. Tang, W. Jin and C. G.. Zhou, “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett, 82, 112-114 (2003)
6 H. B. Jia, Y. Zhang. X. H. Chen, J. Shu, X. H. Luo, Z. S. Zhang and D. P. Yu, “Efficient Field Emission from Single Crystalline Indium Oxide Pyramids,” Appl. Phys. Lett, 82, 4146-4148 (2003)
7 M. J. Zheng, L. D. Zhang, X. Y. Zhang, J. Zhang and G. H. Li, “Fabrication and Optical Absorption of Ordered Indium Oxide Nanowire Arrays Embedded in Anodic Alumina Membranes,” Chem. Phys. Lett. 334, 298-302 (2001)
8 C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp and L. D. Zhang, “Catalytic Growth of Semiconducting In2O3 Nanofibers,” Addv. Mater. 13, 1330-1333 (2001)
9 L. Dai, X. L. Chen, J. K. Jian, M. He, T. Zhou and B. Q. Hu, “Fabrication and Characterization of In2O3 Nanowires,” Appl. Phys. A 75, 687-689 (2002)
10 X. C. Wu, J. M. Hong, Z. J. Han and Y. R. Tao, “Fabrication and Photoluminescence Characteristics of Single Crystalline In2O3 Nanowires,” Chem. Phys. Lett. 373, 28-32 (2003)
11 M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang and X. F. Wang, “Ordered Indium-Oxide Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett 79, 839-841 (2001)
12 X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang. C. Z. Wang and L. D. Zhang, “Synthesis and Photoluminescence of Single-Crystalline In2O3 Nanowires,” J. Mater. Chem. 12, 1602-1605 (2002)
13 H. Q. Cao, X. Q. Qiu, Y. Liang, Q. M. Zhu and M. J. Zhao, “Single-crystalline Gallium-Doped Indium Oxide Nanowires,” Appl. Phys. Lett, 83, 761-763 (2003)
14 H. J. Chun, Y. S. Chio, S. Y. Bae, H. C. Chio and J. H. Park, “Single-Crystalline Tin-Doped Indium Oxide Whiskers: Synthesis and Characterization,” Appl. Phys. Lett, 85, 461-463 (2004)
15 Q. Wan, Z. T. Song, S. L. Feng and T. H. Wang, “Room-Temperature Ultraviolet-Emitting In2O3 Nanowires,” Appl. Phys. Lett, 85, 4759-4761 (2004)
16 C. L. Hsin, J. H. He and L. J. Chen, “Growth of In2O3 Nanocrystal Chains by a Vapor Transport and Condensation Method,” Appl. Surf. Sci. 244, 101-106 (2005).
Chapter 7
1 C. M. Lieber and A. M. Morales, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science. 279, 208-211 (1998).
2 Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, “Single-crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature. 430, 61-65 (2004).
3 Z. L. Wang, R. P. Gao, J. L. Gole and J. D. Stout, “Silica Nanotubes and Nanofiber Arrays,” Adv. Mater. 12, 1938-1940 (2000).
4 J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen and Z. L. Wang, “Synthesis of Si-Ge Oxide Nanowires via the Transformation of Si-Ge Thin Films with Self-Assembled Au Catalysts,” Electrochem. Solid-State Lett. 8, G254-G257 (2005).
5 Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano. Lett. 4, 433-436 (2004).
6 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou and Z. L. Wang, “Beaklike SnO2 Nanorods with Strong Photoluminescent and Field-Emission Properties,” Small. 2, 116-120 (2006).
7 Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D. A. Blom and C. M. Lieber, “Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors,” Nano Lett. 6, 1468-1473 (2006).
8 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
9 Z. W. Pan, Z. R. Dai and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
10 X. Y. Kong, Y. Ding, R. Yang and Z. L. Wang, “Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts,” Science 27, 1348-1351 (2004).
11 K. W. Chang and J. J. Wu, “Low-Temperature Growth of Well-Aligned β–Ga2O3 Nanowires from a Single-Source Organometallic Precursor” Adv. Mater. 16, 545-549 (2004).
12 J. Chen, L. Xu, W. Y. Li and X. L. Gou, “α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications” Adv. Mater. 17, 582-586 (2005).
13 C. L. Hsin, J. H. He and L. J. Chen, “Modulation of Photoemission Spectra of In2O3 Nanowires by the Variation in Zn Doping Level,” Appl. Phys. Lett. 88, 063111-1-3 (2006).
14 M. Nanu. J. Schoonman and A.Goossens, “Inorganic Nanocomposites of n- and p-Type Semiconductors: A New Type of Three-Dimensional Solar Cell,” Adv. Mater. 16, 453-456 (2004).
15 H. J. Fan, R. Scholz, M. Zacharias, U. Goesele, F. Bertram, D. Forster and J. Christen, “Local Luminescence of ZnO Nanowire-Covered Surface: A Cathodoluminescence Microscopy Study,” Appl. Phys. Lett. 86, 023113-1-3 (2005).
16 Y. Liu, J. Dong and M. L. Liu, “Well-Aligned “Nano-Box-Beams” of SnO2,” Adv. Mater. 16, 353-356 (2004).
17 C. Li, B. Lei, D. H. Zhang, X. L. Liu, S. Han, T. Tang, M. Rouhanizadeh, T. Hsiai and C. G. Zhou, “Chemical Gating of In2O3 Nanowires by Organic and Biomolecules,” Appl. Phys. Lett. 83, 4014-4016 (2003).
18 D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu. S. Han, B. Lei and C. G. Zhou, “Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices,” Nano Lett. 4, 1919-1924 (2004).
19 C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, J. Han and C. G. Zhou, “In2O3 Nanowires as Chemical Sensors,” Appl. Phys. Lett. 82, 1613-1615 (2003).
20 C. Li, D. H. Zhang, B. Lei, S. Han, X. L. Liu and C. G. Zhou, “Surface Treatment and Doping Dependence of In2O3 Nanowires as Ammonia Sensors,” J. Phys. Chem. B 107, 12451-12455 (2003).
21 P. Guha. S. Kar and S. Chaudhuri, “Direct Synthesis of Single Crystalline In2O3 Nanopyramids and Nanocolumns and Their Photoluminescence Properties,” Appl. Phys. Lett. 85, 3851-3853 (2004).
22 P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han and M. Meyyappan, “Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor,” Nano Lett. 4, 651-657 (2004).
23 Y. Li, Y. Bando and D. Golberg, “Single-Crystalline In2O3 Nanotubes Filled with In,” Adv. Mater. 15, 581-585 (2003).
24 C. L. Hsin, J. H. He and L. J. Chen, “Growth of In2O3 Nanocrystal Chains by a Vapor Transport and Condensation Method,” Appl. Surf. Sci. 244, 101-106 (2005).
25 F. Liu. M. Q. Bao, K. L. Wang, C. Li, B. Lei and C. G. Zhou, “One-Dimensional Transport of In2O3 Nanowires,” Appl. Phys. Lett. 86, 213101-1-3 (2005).
26 D. H. Zhang, C. Li, S. Han, X. L. Liu, T. Tang, W. Jin and C. G. Zhou, “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett. 82, 112-114 (2003).
27 B. Lei, C. Li, D. H. Zhang, Q. F. Zhou, K. K. Shung and C. G. Zhou, “Nanowire Transistors with Ferroelectric Gate Dielectrics: Enhanced Performance and Memory Effects,” Appl. Phys. Lett. 84, 4553-4555 (2004).
28 A. I. Hochbaum, R. Fan, R. He and P. D. Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano Lett. 5, 457-460 (2005).
29 D. M. Whang, S. Jin. Y. Wu and C. M. Lieber, “Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems,” Nano Lett. 3, 1255-1259 (2005).
30 P. A. Smith, C. D. Nordquist, T. N. Jackson and T. S. Mayer, “Electric-Field Assisted Assembly and Alignment of Metallic Nanowires,” Appl. Phys. Lett. 77, 1399-1401 (2000).
31 L. Cerutti, J. Ristic, S. Fernandez-Garrido, E. Calleja, A. Trampert, K. H. Ploog, S. Lazic and J. M. Calleja, “Wurtzite GaN Nanocolumns Grown on Si (001) by Molecular Beam Epitaxy,” Appl. Phys. Lett. 88, 213114-1-3 (2006).
32 T. Y. Zhang and Y. J. Su, “The Critical Thickness of an Epilayer Deposited on a Semiconductor-on-Insulator Compliant Substrate,” Appl. Phys. Lett. 74, 1689-1691 (1999).
33 M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, “One-Dimensional Heterostructures in Semiconductor Nanowhiskers,” Appl. Phys. Lett. 80, 1058-1060 (2002).
Chapter 8
1 G. Stollwerck, S. Reber and C. Haβler, “Crystalline Silicon Thin-Film Solar Cells on Silicon Nitride Ceramic Substrates,” Adv. Mater. 13, 1820-1824 (2001).
2 T. M. Mayer, J. W. Elam, S. M. George, P. G. Kotula and R. S. Goeke, “Atomic-layer Deposition of Wear-resistant Coatings for Microelectromechanical Devices,” Appl. Phys. Lett. 82, 2883-2885 (2003).
3 H. C. You, P. Y. Kuo, F. H. Ko, T. S. Chao and T. F. Lei, “The Impact of Deep Ni Salicidation and NH3 Plasma Treatment on Nano-SOI FinFETs,” IEEE Electron Device Lett. 27, 799-801 (2006).
4 H. T. Chen, S. I. Hsieh, C. J. Lin and Y. C. King, “Embedded TFT NAND-Type Nonvolatile Memory in Panel,” IEEE Electron Device Lett. 28, 499-501 (2007).
5 C.M. Lieber and Z.L. Wang, “Functional Nanowires” MRS Builletin, 32, 99-108 (2007).
6 Z. H. Chen, J. Appenzeller, Y. M. Lin, J. Sippel-Oakley, A. G. Rinzler, J. Y. Tang, S. J. Wind, P. M. Solomon and P. Avouris, “An Integrated Logic Circuit Assembled on a Single Carbon Nanotube,” Science 311, 1735 (2006).
7 Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291, 851-853 (2001).
8 Z. W. Pan, Z. R. Dai and Z.L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001).
9 K. L. Ekinci, X. M. H. Huang and M. L. Roukes, “Ultrasensitive Nanoelectromechanical Mass Detection,” Appl. Phys. Lett. 84, 4469-4472 (2004).
10 Y. F. Zhang, X. D. Han, K. Zheng, Z. Zhang, X. N. Zhang, J. Y. Fu, Y. Ji, Y. J. Hao, X. Y. Guo and Z.L. Wang, “Direct Observation of Super-Plasticity of Beta-SiC Nanowires at Low Temperature,” Adv. Funct. Mater. 17, 3435-3440 (2007).
11 R. R. He and P. D. Yang, “Giant piezoresistance effect in silicon nanowires,” Nature Nanotech. 1, 42-46 (2006).
12 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,” Science 287, 637-640 (2000).
13 P. X. Gao, W. J. Mai and Z. L. Wang, “Superelasticity and Nanofracture Mechanics of ZnO Nanohelices,” Nano Lett. 6, 2536-2543 (2006).
14 X. D. Bai, D. Golberg, Y. Bando, C. Y. Zhi, C. C. Tang, M. Mitome and K. Kurashima, “Deformation-Driven Electrical Transport of Individual Boron Nitride Nanotubes,” Nano Lett. 7, 632-37 (2007).
15 W. Z. Rong, W. Q. Ding, L. Madler, R. S. Ruoff and S. K. Friedlander, “Mechanical Properties of Nanoparticle Chain Aggregates by Combined AFM and SEM: Isolated Aggregates and Networks,” Nano Lett. 6, 2646-2655 (2006).
16 L.J. Chen, “ Silicon Nanowires: Key Building Block for Future Electronics,” J. Mater. Chem. 17, 4639-4643 (2007).
17 X. D. Han, K. Zheng, Y. F. Zhang, X. N. Zhang, Z. Zhang and Z. L. Wang, “Low-Temperature In Situ Large-Strain Plasticity of Silicon Nanowires,” Adv. Mater. 19, 2112-2119 (2007).
18 X. X. Li, T. Ono, Y. L. Wang and M. Esashi, “Ultrathin Single-crystalline-silicon Cantilever Resonators: Fabrication Technology and Significant Specimen Size Effect on Young’s Modulus,” Appl. Phys. Lett. 83, 3081-3083 (2003).
19 S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gosele and C. Ballif, “Measurement of the Bending Strength of Vapor-Liquid-Solid Grown Silicon Nanowires,” Nano Lett. 6, 622-625 (2006).
20 A. S. Paulo, N. Arellano, J. A. Plaza, R. He, C. Carraro, R. Maboudian, R. T. Howe, J. Bokor and P. D. Yang, “Suspended Mechanical Structures Based on Elastic Silicon Nanowire Arrays,” Nano Lett. 7, 1100-1004 (2007).
21 A. Heidelberg, L. T. Ngo, B. Wu, M. A. Phillips, S. Sharma, T. I. Kamins, J. E. Sader and J. J. Boland, “A Generalized Description of the Elastic Properties of Nanowires,” Nano Lett. 6, 1101-1106 (2006).
22 C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen and L. J. Chen, “Er-doped Silicon Nanowires with 1.54 μm Light-emitting and Enhanced Electrical and Field Emission Properties,” Appl. Phys. Lett. 91, 093133-1-3 (2007).
23 B. E. Schuster, Q. Wei, M. H. Ervin, S. O. Hruszkewycz, M. K. Miller, T. C. Hufnagele and K.T. Ramesh, “Bulk and Microscale Compressive Properties of a Pd-based Metallic Glass,” Scripta, Materialia, 57, 517-520 (2007).
24 L. D. Landau and E. M. Lifshiëtìs, Theory of elasticity. Pergamon Press, Addison-Wesley Pub. Co., London, Reading, Mass., 1959.
25 S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability. McGraw-Hill, New York, 1961, p. 46.
26 A. S. Paulo, J. Bokor, R. T. Howe, R. He, P. D. Yang, D. Gao, C. Carraro and M. Maboudian, “Mechanical Elasticity of Single and Double Clamped Silicon Nanobeams Fabricated by the Vapor-liquid-solid Method,” Appl. Phys. Lett. 87, 053111-1-3 (2005).
27 J. H. Song, X. D. Wang, E. Riedo and Z. L. Wang, “Elastic Property of Vertically Aligned Nanowires,” Nano Lett. 5, 1954-1958 (2005).
Chapter 9
1 W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, L. J. Chen, Y. H. Peng and H. H. Cheng, “Enhanced Growth of CoSi2 on Epitaxial Si0.7Ge0.3 with a Sacrificial Amorphous Si Interlayer,” Appl. Phys. Lett. 81, 820-822 (2002)
2 J. Seger and P.-E. Hellström, J. Liu, B. G. Malm, M. von Haartman, M. Östling and S.-L. Zhang, “Lateral Encroachment of Ni-silicides in the Source/drain Regions on Ultrathin Silicon-on-insulator,” Appl. Phys. Lett. 86, 253507-1-3 (2005)
3 Q. T. Zhao, F. Klinkhammer, M. Dolle, L. Kappius and S. Mantl, “Nanometer Patterning of Epitaxial CoSi2 /Si (100) for Ultrashort Channel Schottky Barrier Metal–oxide–semiconductor Field Effect Transistors,” Appl. Phys. Lett. 74, 454-456 (1999)
4 J.Y. Yew, H.C. Tseng, L.J. Chen, Y. Nakamura and C.Y. Chang, “Formation of CoSi2 on Selective EpitaxialGrowth Silicon inside 0.1-0.6 mm Oxide Openings,” Appl. Phys. Lett. 69,3692-3694 (1996)
5 S. M. Chang, H. Y. Huang, H. Y. Yang and L. J. Chen, “Mechanism of Enhanced Formation of C54–TiSi2 in High-temperature Deposited Ti thin Films on Preamorphized (001) Si,” Appl. Phys. Lett. 74, 224-226 (1999)
6 S. L. Cheng, H. Y. Huang, Y. C. Peng, L. J. Chen, B. Y. Tsui, C. J. Tsai and S. S. Guo, “Effects of Stress on the Growth of TiSi2 Thin Films on (001) Si,” Appl. Phys. Lett. 74, 1406-1408 (1999)
7 H.C. Hsu, W. W. Wu, H. F. Hsu and L. J. Chen, “Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface,” Nano. Lett. 7, 885-889 (2007)
8 S. Y. Chen and L. J. Chen, “Self-assembled Endotaxial α-FeSi2 Nanowires with Length Tunability Mediated by a Thin Nitride Layer on (001) Si,” Appl. Phys. Lett. 87, 253111-1-3 (2006)
9 S. Y. Chen, H. C. Chen and L. J. Chen, “Nitride-mediated Epitaxy of Self-assembled NiSi2 Nanowires on (001) Si,” Appl. Phys. Lett. 88, 193114-1-3 (2006)
10 Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu and C. D. Chen,” TaSi2 Nanowires: A Potential Field Emitter and Interconnect,” Nano. Lett. 6, 1637-1644 (2006)
11 A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel and S. Jin, “Synthesis and Properties of Single-Crystal FeSi Nanowires,” Nano. Lett. 6, 1617-1621 (2006)
12 L. Ouyang, E. S. Thrall, M. M. Deshmukh and H. Park, “Vapor-Phase Synthesis and Characterization of ε-FeSi Nanowires,” Adv. Mater. 18, 1437-1440 (2006)
13 B. Liu, Y. Wang, S. Dilts, T. S. Mayer and S. E. Mohney, “Silicidation of Silicon Nanowires by Platinum,” Nano. Lett. 7, 818-824 (2007)
14 Y. Song, A. L. Schmitt and S. Jin, “Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity,” Nano. Lett. 7, 965-969 (2007)
15 C. P. Li, N. Wang, S. P. Wong, C. S. Lee and S. T. Lee, “Metal Silicide/Silicon Nanowires from Metal Vapor Vacuum Arc Implantation,” Adv. Mater. 14, 218-221 (2002)
16 Y. Wu, J. Xiang, C. Yang, W. Lu and C. M. Lieber, “Single-crystal Metallic Nanowires and Metal/semiconductor Nanowire Heterostructures,” Nature, 430, 61-65 (2004)
17 J. Luo, L. Zheng and J. Zhu, “Novel Synthesis of Pt6Si5 Nanowires and Pt6Si5-Si Nanowire Hetrojunctions by Using Polycrystalline Pt Nanowires as Templates,” Adv. Mater. 15, 579-581 (2003)
18 K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Magnetic Properties of Single-Crystalline CoSi Nanowires,” Nano. Lett. 7, 1240-1245 (2007)
19 W. Lur and L. J. Chen, “Interfacial Reactions of Cobalt Thin Films on BF2+ Ion-implanted (001) Silicon,” J. Appl. Phys. 64, 3505-3511 (1988)
20 W. L. Ren, C. C. Li, L. T. Zhang, K. Ito and J. S. Wu, “Effects of Ge and B Substitution on Thermoelectric Properties of CoSi,” J. Alloys. Compd. 392, 50-54 (2005)
21 B. Ressel, K. C. Prince, S. Heun and Y. Homma, “Wetting of Si Surfaces by Au–Si Liquid Alloys,” J. Appl. Phys. 93, 3886-3892 (2003)
22 J. Kim and W. A. Anderson, “Direct Electrical Measurement of the Self-Assembled Nickel Silicide Nanowire,” Nano. Lett. 6, 1356-1359 (2006)
23 J. Kim, W. A. Anderson, Y. J. Song and G. B. Kim, “Self-assembled Nanobridge Formation and Spontaneous Growth of Metal-induced Nanowires,” Appl. Phys. Lett. 86, 253101-1-3 (2005)
24 C. L. Hsin, J. H. He, C. Y. Lee, W. W. Wu, P. H. Yeh, L. J. Chen and Z. L. Wang, “Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates,” Nano. Lett. 7, 1799-1803 (2007)
25 D. Walter, I. W. Karyasa and Z. Anorg. “Synthesis and Characterization of Cobalt Monosilicide (CoSi) with CsCl Structure Stabilized by a β-SiC Matrix,” Allg. Chem. 631, 1285-1288 (2005)
Chapter 10
1 K. Pohl, M. C. Bartelt, J. de la Figuera, N. C. Bartelt, J. Hrbek and R. Q. Hwang, “Identifying the Forces Responsible for Self-organization of Nanostructures at Crystal Surfaces,” Nature 397, 238-241 (1999).
2 R. A. Marks, S. T. Taylor, E. Mammana, R. Gronsky and A. M. Glaeser, “Directed Assembly of Controlled-misorientation Bicrystals,” Nature Mater. 3, 682-686 (2004).
3 F. Fournel, H. Moriceau, B. Aspar, K. Rousseau, J. Eymery, J. L. Rouviere and N. Magnea, “Accurate Control of the Misorientation Angles in Direct Wafer Bonding,” Appl. Phys. Lett. 80, 793-795 (2002).
4 K. Rousseau, J. L. Rouviere, F. Fournel and H. Moriceau, “Stability of Interfacial Dislocations in (001) Silicon Surfacial Grain Boundaries,” Appl. Phys. Lett. 80, 4121-4123 (2002).
5 R. A. Wind, M. J. Murtagh, F. Mei, Y. Wang, M. A. Hines and S. L. Sass, “Fabrication of Nanoperiodic Surface Structures by Controlled Etching of Dislocations in Bicrystals,” Appl. Phys. Lett. 78, 2205-2207 (2001).
6 Y. Ishikawa, C. Yamamoto and M. Tabe, “Single-electron Tunneling in a Silicon-on-insulator Layer Embedding an Artificial Dislocation Network,” Appl. Phys. Lett. 88, 073112-1-3 (2006).
7 H. Brune, M. Giovannini, K. Bromann and K. Kern, “Self-organized Growth of Nanostructure Arrays on Strain-relief Patterns,” Nature 394, 451-453 (1998).
8 L. B. Hansen, K. Stokbro, B. I. Lundqvist, K. W. Jacobsen and D. M. Deaven, “Nature of Dislocations in Silicon” Phys. Rev. Lett. 75, 4444-4447 (1995).
9 G. Springholz and K. Wiesauer, “Nanoscale Dislocation Patterning in PbTe/PbSe (001) Lattice-Mismatched Heteroepitaxy,” Phys. Rev. Lett. 88, 015507-1-4 (2002).
10 W. Cai, V. V. Bulatov, J. Chang, J. Li and S. Yip, “Anisotropic Elastic Interactions of a Periodic Dislocation Array,” Phys. Rev. Lett. 86, 5727-5730 (2001).
11 M. W. Chu, I. Szafraniak, R. Scholz. C. Harnagea, D. Hesse, M. Alexe and U. Gösele, “Impact of Misfit Dislocations on the Polarization Instability of Epitaxial Nanostructured Ferroelectric Perovskites,” Nature Mater. 3, 87-90 (2004).
12 F. Leroy, G. Renaud, A. Leroublon, R. Lazzari, C. Mottet and J. Goniakowski, “Self-Organized Growth of Nanoparticles on a Surface Patterned by a Buried Dislocation Network,” Phys. Rev. Lett. 95, 185501-1-4 2005.
13 F. Leroy, J. Eymery, P. Gentile and F. Fournel, “Ordering of Ge Quantum Dots with Buried Si Dislocation Networks,” Appl. Phys. Lett. 80, 3078-3080 (2002).
14 C. H. Liu, W. W. Wu and L. J. Chen, “Collective Movement of Three Million Plus Au Atoms on a Silicon Bicrystal,” Appl. Phys. Lett. 88, 023117-1-3 (2006).
15 C. H. Liu, W. W. Wu and L. J. Chen, “Directed Movement of Au–Si Droplets towards Buried Dislocation Networks on Silicon Bicrystals,” Appl. Phys. Lett. 88, 133112-1-3 (2006).
16 J. Seger, P.– E. Hellström, J. Lu, B. G. Malm, M. Von Haartman, M. Ostling and S. L. Zhang, “Lateral Encroachment of Ni-silicides in the Source/Drain Regions on Ultrathin Silicon-on-insulator,” Appl. Phys. Lett. 86, 253507-1-3 (2005).
17 H. C. Hsu, W. W. Wu, H. F. Hsu and L. J. Chen, “Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface,” Nano. Lett. 7, 885-889 (2007).
18 S. L. Cheng, H. Y. Huang, Y. C. Peng, L. J. Chen, B. Y. Tsui, C. J. Tsai and S. S. Guo, “Effects of Stress on the Growth of TiSi2 Thin Films on (001) Si,” Appl. Phys. Lett. 74, 1406-1408 (1999).
19 T. H. Yang, S. L. Cheng and L. J. Chen, “Auto-correlation Function Analysis of Phase Formation in the Initial Stage of Interfacial Reactions of Multilayered Titanium-Silicon Thin Films,” Thin. Solid. Films 469-470, 513-517 (2004).
20 H. F. Hsu, L. J. Chen, H. L. Hsiao and T. W. Pi, “Adsorption and Switching Behavior of Individual Ti Atoms on the Si (111)-7x7 Surface,” Phys. Rev. B 68, 165403-1-9 (2003).
21 D. McLean, Grain Boundaries in Metals. (Oxford, London, 1957).
22 H. F. Hsu, T. F. Chiang, H. C. Hsu, L. J. Chen, “Shape Transition in the Initial Growth of Titanium Silicide Clusters on Si (111),” Jpn. J. Appl. Phys. 43, 4541-4544 (2004).
23 A. E. Romanov, P. M. Petroff and J. S. Speck, “Lateral Ordering of Quantum Dots by Periodic Subsurface Stressors,” Appl. Phys. Lett. 74, 2280-2282 (1999).
24 A. Bourret, “How to Control the Self-organization of Nanoparticles by Bonded Thin Layers,” Surf. Sci. 432, 37-53 (1999).
25 H. Jeon, C. A. Sukow, J. W. Honeycutt, G. A. Rozgonyi and R. J. Nemanich, “Morphology and Phase Stability of TiSi2 on Si,” J. Appl. Phys. 71, 4269-4276 (1992).
26 W. C. Tsai, H. C. Hsu, H. F. Hsu, L. J. Chen, “Vacancy Ordering in Self-Assembled Erbium Silicide Nanowires on Atomically Clean Si (001),” Appl. Surf. Sci. 244, 115-119 (2005).
Chapter 11
1 T. L. Tansley and C. P. Foley, “Optical Band Gap of Indium Nitride,” J. Appl. Phys. 59, 3241-3244 (1986).
2 W. Walukiewicz, “Narrow Band Gap Group III-Nitride Alloys,” Physica E 20, 300-307 (2004).