研究生: |
李俊叡 Lee, Chun-Jui. |
---|---|
論文名稱: |
氦離子佈植單晶矽誘發缺陷以輔助合成金屬奈米粒子之新穎製程研究 Investigation of metal nanoparticle synthesis in monocrystalline silicon using a novel process assisted by helium ion implantation-induced cavities |
指導教授: |
梁正宏
Liang, Jenq-Horng 趙得勝 Chao, Der-Sheng |
口試委員: |
宋大崙
Sung, Ta-Lun 藍貫哲 Lan, Kuan-Che |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 離子佈植 、奈米粒子 、表面電漿共振效應 |
外文關鍵詞: | ion implantation, nanoparticles, surface plasmon resonance |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由金屬奈米粒子的表面電漿子共振特性(surface plasmon resonance, SPR)以提升矽基太陽能電池吸收效率行之有年,其中以離子束合成法(ion beam synthesis, IBS)最受矚目且被廣泛研究,但該方法卻擁有諸多缺點:(一)離子佈植所造成輻射損傷,致使材料產生難以回復的缺陷,甚至造成材料的非晶化現象;(二)植入的高濃度金屬離子將影響單晶材料的磊晶再成長(epitaxial regrowth)等。有鑑於此,本論文研究旨於開發與探討另一新穎製程,即利用氦離子佈植先行於單晶矽內部產生空腔,再行鍍上金屬薄膜並經由該等空腔對金屬原子發生化學吸附(chemisorption)、異質磊晶成長(heterogeneous epitaxial growth)效應,形成金屬奈米粒子於單晶矽內。本研究進而改變各階段的製程參數,再配合穿透式電子顯微鏡與二次離子質譜儀分析,進一步探討該製程的物理機制。研究結果顯示,室溫 40 keV 氦離子佈植於單晶矽形成空腔的臨界劑量為 9×1015 ions/cm2,且須產生空腔才具有形成金屬奈米粒子之能力;金屬原子於空腔壁上發生異質磊晶,乃因間隙金屬原子對空腔的化學吸附驅動力與形成金屬矽化物驅動力競爭下的熱力學結果;此外,空腔工程的退火溫度對於空腔的發展影響甚大,當退火溫度為 750°C 時,單晶矽內將殘留較多的穩定空腔予以形成金屬奈米粒子,當退火溫度高達 950°C 時,單晶矽內的輻射損傷因大量修復,僅殘留較少的穩定空腔,致形成較少金屬奈米粒子。
The surface plasmon resonance (SPR) effects arising from metal nanoparticles has been employed used to enhance the absorption efficiency in silicon-based solar cells for years. Ion beam synthesis is the widely-accepted method for forming metal nanoparticles, but holds some disadvantages. First, the radiation damage due to ion implantation causes lots of unrecoverable defects within material and even results in amorphization. Second, the epitaxial regrowth of single crystal material would be greatly affected by the high concentration of metal atoms implanted in material. In order to overcome the above shortcomings, this study aimed to investigate a novel process. In the process, helium ions are implanted into monocrystalline silicon to create cavities, and then induces a chemical adsorption reaction of metal atoms in cavity wall through a metal diffusion process. The results revealed that, the threshold fluence to form cavities by 40 keV helium ion implantation at room temperature is 9×1015 ions/cm2. In addition, the cavities are also the prerequisite for the formation of metal nanoparticles in silicon. The hetero-epitaxial growth of metal atoms on the cavity wall is thermodynamically allowed, which means that the heterogeneous epitaxy of metal atoms on the cavity wall is more preferable than the formation of metal silicide. Furthermore, the annealing temperature of the cavity engineering has a dramatic impact on the development of the cavities. The use of annealing of 750°C will produce more of stable cavities to form metal nanoparticles than that of 950°C.
[1] A. Meldrum, R. Haglund, L. Boatner, C.W. White, “Nanocomposite materials formed by ion implantation,” Advanced Materials 13(19), 1431-1444 (2001).
[2] Y.H. Su, Y.F. Ke, S.L. Cai, Q.Y. Yao, “Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell,” Light: Science & Applications 1(6), 1-5 (2012).
[3] M. Dhonde, K. Sahu, V. Murty, S.S. Nemala, P. Bhargava, “Surface plasmon resonance effect of Cu nanoparticles in a dye sensitized solar cell,” Electrochimica Acta 249, 89-95 (2017).
[4] L.B. Luo, C. Xie, X.H. Wang, Y.Q. Yu, C.Y. Wu, H. Hu, K.Y. Zhou, X.W. Zhang, J.S. Jie, “Surface plasmon resonance enhanced highly efficient planar silicon solar cell,” Nano Energy 9, 112-120 (2014).
[5] S. Pillai, K. Catchpole, T. Trupke, M. Green, “Surface plasmon enhanced silicon solar cells,” Journal of applied physics 101(9), 093105 (2007).
[6] S. Nie, S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102-1106 (1997).
[7] W.A. Murray, W.L. Barnes, “Plasmonic materials,” Advanced materials 19(22), 3771-3782 (2007).
[8] E. Hutter, J.H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced materials 16(19), 1685-1706 (2004).
[9] G. Arnold, J. Borders, “Aggregation and migration of ion‐implanted silver in lithia‐alumina‐silica glass,” Journal of Applied Physics 48(4), 1488-1496 (1977).
[10] A. Agarwal, K. Christensen, D. Venables, D. Maher, G. Rozgonyi, “Oxygen gettering and precipitation at mev si+ ion implantation induced damage in silicon,” Applied physics letters 69(25), 3899-3901 (1996).
[11] M.S. Martin, N.D. Theodore, C.C. Wei, L. Shao, “Physical assembly of Ag nanocrystals on enclosed surfaces in monocrystalline Si,” Scientific Reports 4, 6744 (2015).
[12] J. Homola, S.S. Yee, G. Gauglitz, “Surface plasmon resonance sensors,” Sensors and actuators B: Chemical 54(1-2), 3-15 (1999).
[13] K.A. Willets, R.P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267-297 (2007).
[14] J. Homola, M. Piliarik. “Surface plasmon resonance based sensors,” Springer, 45-67 (2006).
[15] H.A. Atwater, A. Polman. “Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group,” World Scientific, 1-11 (2011).
[16] M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nature materials 9(3), 239-244 (2010).
[17] C. Hägglund, M. Zäch, G. Petersson, B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Applied physics letters 92(5), 053110 (2008).
[18] R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, “Design of plasmonic thin‐film solar cells with broadband absorption enhancements,” Advanced materials 21(34), 3504-3509 (2009).
[19] J.N. Munday, H.A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano letters 11(6), 2195-2201 (2011).
[20] H. Seo, Q. Chen, I. Rusakova, Z. Zhang, D. Wijesundera, S. Yeh, X. Wang, L. Tu, N. Ho, Y. Wu, “Formation of silver nanoparticles in silicon by metal vapor vacuum arc ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 292(50-54 (2012).
[21] S. Estreicher, J. Hastings, P. Fedders, “Defect-induced dissociation of H2 in silicon,” Physical Review B 57(20), R12663 (1998).
[22] T. Höchbauer, A. Misra, M. Nastasi, J. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon,” Journal of Applied Physics 92(5), 2335-2342 (2002).
[23] X. Lu, S.S. K. Iyer, C. Hu, N.W. Cheung, J. Min, Z. Fan, P.K. Chu, “Ion-cut silicon-on-insulator fabrication with plasma immersion ion implantation,” Applied physics letters 71(19), 2767-2769 (1997).
[24] M. Bruel, B. Aspar, A.A. Herve, “Smart-Cut: a new silicon on insulator material technology based on hydrogen implantation and wafer bonding,” Japanese journal of applied physics 36(3S), 1636 (1997).
[25] X. Feng, Y. Huang, “Mechanics of smart-cut® technology,” International Journal of Solids and Structures 41(16-17), 4299-4320 (2004).
[26] B. Aspar, M. Bruel, M. Zussy, M, Cartier, “Transfer of structured and patterned thin silicon films using the Smart-Cut® process,” Electronics Letters 32(32), 1985-1986 (1996).
[27] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, R. Grimes, “Advanced inorganic chemistry,” Wiley New York (1988).
[28] G. Cerofolini, F. Corni, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, “Hydrogen and helium bubbles in silicon,” Materials Science and Engineering: R: Reports 27(1-2), 1-52 (2000).
[29] V. Raineri, S. Campisano, “Secondary defect dissolution by voids in silicon,” Applied physics letters 69(12), 1783-1785 (1996).
[30] V. Raineri, S. Coffa, E. Szilagyi, J. Gyulai, E. Rimini, “He-vacancy interactions in si and their influence on bubble formation and evolution,” Physical Review B 61(2), 937 (2000).
[31] G. Cerofolini, G. Calzolari, F. Corni, C. Nobili, G. Ottaviani, R. Tonini, “Ultradense gas bubbles in hydrogen or helium-implanted (or coimplanted) silicon,” Materials Science and Engineering: B 71(1-3), 196-202 (2000).
[32] V. Raineri, A. Battaglia, E. Rimini, “Gettering of metals by He induced voids in silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 96(1-2), 249-252 (1995).
[33] A. Battaglia, G. Fallica, G. Percolla, V. Raineri, “Gettering of metals by voids in silicon devices,” ESSDERC'94: 24th European Solid State Device Research Conference, 403-406 (1994).
[34] S. Myers, G. Petersen, D. Follstaedt, T. Headley, J. Michael, C. Seager, “Strong segregation gettering of transition metals by implantation-formed cavities and boron-silicide precipitates in silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 120(1-4), 43-50 (1996).
[35] J.F. Ziegler, J.P. Biersack, M.D. Ziegler, “Stopping and Range of ions in Solids, 1,” Pergamon Press (1985).
[36] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書 3,國家科學委員會精密儀器發展中心,中華民國八十三年
[37] J. Hastings, S. Estreicher, P.A. Fedders, “Vacancy aggregates in silicon,” Physical Review B 56(16), 10215 (1997).
[38] P.G. Coleman, “Activation energies for vacancy migration, clustering and annealing in silicon,” Journal of Physics: Conference Series 265(1), 012001 (2011).
[39] M. Alatalo, M.J. Puska, R.M. Nieminen, “First-principles study of He in Si,” Physical Review B 46(19), 12806 (1992).
[40] F. Corni, G. Calzolari, F. Gambetta, C. Nobili, R. Tonini, M. Zapparoli, “Evolution of vacancy-like defects in helium-implanted (100) silicon studied by thermal desorption spectrometry,” Materials Science and Engineering: B 71(1-3), 207-212 (2000).
[41] B. Nielsen, O. Holland, T. Leung, K. Lynn, “Defects in Mev Si‐implanted Si probed with positrons,” Journal of applied physics 74(3), 1636-1639 (1993).
[42] M. Fujinami, A. Tsuge, K. Tanaka, “Characterization of defects in self‐ion implanted si using positron annihilation spectroscopy and rutherford backscattering spectroscopy,” Journal of applied physics 79(12), 9017-9021 (1996).
[43] P. Simpson, M. Vos, I. Mitchell, C. Wu, P. Schultz, “Ion-beam-induced damage in silicon studied using variable energy positrons, rutherford backscattering, and infrared absorption,” Physical Review B 44(22), 12180 (1991).
[44] S. Frabboni, F. Corni, C. Nobili, R. Tonini, G. Ottaviani, “Nanovoid formation in helium-implanted single-crystal silicon studied by in situ techniques,” Physical Review B 69(16), 165209 (2004).
[45] S. Myers, D. Follstaedt, “Forces between cavities and dislocations and their influence on semiconductor microstructures,” Journal of applied physics 86(6), 3048-3063 (1999).
[46] E.R. Weber, “Transition metals in silicon,” Applied Physics A 30(1), 1-22 (1983).
[47] B.O. Kolbesen, “Proceedings of the symposium on crystalline defects and contamination, their impact and control in device manufacturing,” Electrochemical Society (1997).
[48] A.A. Istratov, C. Flink, H. Hieslmair, E.R. Weber, T. Heiser, “Intrinsic diffusion coefficient of interstitial copper in silicon,” Physical review letters 81(6), 1243 (1998).
[49] J.W. Leung, D. Eaglesham, J. Sapjeta, D. Jacobson, J. Poate, J. Williams, “The precipitation of fe at the Si–SiO2 interface,” Journal of applied physics 83(1), 580-584 (1998).
[50] V. Raineri, G. Fallica, S. Libertino, “Lifetime control in silicon devices by voids induced by he ion implantation,” Journal of applied physics 79(12), 9012-9016 (1996).
[51] R. Hull, “Properties of crystalline silicon,” IET 20, (1999).
[52] M. Seibt, H. Hedemann, A. Istratov, F. Riedel, A. Sattler, W. Schröter, “Structural and electrical properties of metal silicide precipitates in silicon,” physica status solidi (a) 171(1), 301-310 (1999).
[53] H. Shimizu, Y. Sugino, N. Suzuki, Y. Matsuda, S. Kiyota, K. Nagasawa, M. Fujita, “A new concept of p/sup-/(n/sup-/)/p/sup-/(n/sup-/) thin-film epitaxial silicon wafers for mos ulsi's that ensures excellent gate oxide integrity,” IEEE transactions on semiconductor manufacturing 11(2), 239-245 (1998).
[54] S. Myers, G. Petersen, T. Headley, J. Michael, T. Aselage, C. Seager, “Metal gettering by boron-silicide precipitates in boron-implanted silicon,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 127, 291-296 (1997).
[55] W. Deweerd, G. Koops, H. Pattyn, S. Myers, T. Aselage, T. Headley, G. Petersen, “Mössbauer study of the proximity gettering of ion-implanted 57Co impurities by B-Si precipitates in Si,” EPL (Europhysics Letters) 44(6), 707 (1998).
[56] S. Myers, G. Petersen, C. Seager, “Binding of cobalt and iron to cavities in silicon,” Journal of applied physics 80(7), 3717-3726 (1996).
[57] G. Petersen, S. Myers, D. Follstaedt, “Gettering of transition metals by cavities in silicon formed by helium ion implantation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 127, 301-306 (1997).
[58] J. Grisolia, A. Claverie, G.B. Assayag, S. Godey, E. Ntsoenzok, F. Labhom, A.V. Veen, “Growth mechanism of cavities in Mev helium implanted silicon,” Journal of applied physics 91(11), 9027-9030 (2002)
[59] T.Y. Tan, “Atomic modelling of homogeneous nucleation of dislocations from condensation of point defects in silicon,” Philosophical Magazine A 44(1), 101-125 (1981).
[60] T.S. Matthews, C. Sawyer, D.F. Ogletree, Z.L.Weber, D.C. Chrzan, J. Wu, “Large reaction rate enhancement in formation of ultrathin ausi eutectic layers,” Physical review letters 108(9), 096102 (2012).
[61] P.B. Hirsch, A. Howie, R.B. Nichol, D.W. Pashley, M.J. Whelan, “Electron microscopy of thin crystals,” Butterworths, London. (1965).
[63] F. Schiettekatte, C. Wintgens, S. Roorda, “Influence of curvature on impurity gettering by nanocavities in Si,” Applied physics letters 74(13), 1857-1859 (1999).