簡易檢索 / 詳目顯示

研究生: 陳威佑
Chen, Wei Yu
論文名稱: 以四階段成長法在低壓化學氣相沉積系統成長立方晶型碳化矽
Growth of 3C-SiC on Si(100) by low pressure chemical vapor deposition using a modified four-step process
指導教授: 黃振昌
Hwang, J.
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 122
中文關鍵詞: 方晶型碳化矽低壓化學氣相沉積四階段成長法
外文關鍵詞: 3C-SiC, low pressure vapor phase deposition, modified four-step method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A modified four-step method has been developed to grow a void-free 3C-SiC film of high quality on Si(100) in a mixed gas of SiH4-C3H8-H2 using low pressure chemical vapor deposition. A diffusion step was added after the carburization step in the traditional three-step method (clean, carburization, growth), and no cooling between each step was required. X-ray photoelectron C 1s spectra support that the formation of Si-C bonds can be greatly improved in the as-carburized Si(100) surface after diffusion at 1350 °C for 300 s. A thick 3C-SiC film of good crystal quality was grown on the as-diffused SiC layer during the growth step, confirmed by both X-ray diffraction and electron diffraction data. Hall effect measurements were used to characterize the electrical properties of SiC films. All the SiC films are n-type. The Hall mobility and carrier concentration of a SiC film of 1.5 µm thick increase from 320 to 395 cm2/(V s) and from 1.6 × 1017 cm-3 to 2.7 × 1017 cm-3, respectively, when the diffusion step is added.
    The atomic arrangement and bonding characteristics of void-free 3C-SiC/Si(100) grown by the modified four-step method are also presented. Without the diffusion step, Si–C bonds are partially formed in the as-carburized layer on Si(100). The ratio of C–C bonds to Si–C bonds is about 7:3, which can be lowered to about 1:9 after the diffusion step at 1350°C for 5 min or at 1300°C for 7 min according to C 1s core level spectra. The residual C–C bonds cannot be removed, which is associated with an irregular atomic arrangement (amorphous) located either at the 3C-SiC/Si(100) interface or at the intersection of twin boundaries in the 3C-SiC buffer layer based on the lattice image taken by transmission electron microscope. The diffusion step helps the formation of Si–C bonds more completely and results in a SiC buffer layer of high quality formed on Si(100) before the growth step. However, twins and stacking faults still appear in the 3C-SiC buffer layer after the diffusion step. The formation mechanism of the 3C-SiC buffer layer is proposed and discussed.
    Growth of 3C-SiC films on Si(100) using a modified four-step method in the mixed gas of SiH4 and CH4 was performed in a low pressure chemical vapor deposition. The influences of experimental parameters such as flow ratio of precursors, carburization temperature and time on crystal quality of 3C-SiC were investigated and compared with our previous work in the case of C3H8. The thicker buffer layer with rougher surface and voids were observed using CH4 as precursor that result from the lower pyrolysis efficiency of CH4. X-ray photoelectron C 1s spectra shows that unlike only C-C and C-Si bonds residing in the buffer layer when using C3H8 as precursor, additional C-H bonds accompany with C-C and C-Si bonds in the case of CH4, which may result in the worse crystal quality of 3C-SiC films.


    本篇論文係利用四階段成長法,在低壓化學氣相沉積系統成長無孔洞立方晶形碳化矽,並探討不同反應氣體(矽甲烷-丙烷-氫氣與矽甲烷-甲烷-氫氣)在矽基板上成長立方晶型碳化矽的差異。四階段成長法省略了傳統三階段成長法中降溫的步驟,並在碳化步驟後新增一擴散改質步驟。在矽甲烷-丙烷-氫氣反應氣體系統中,實驗結果顯示,碳化緩衝層經過30分鐘1350 oC的擴散改質之後,能有效地提升表面的碳矽鍵結生成。經由X光繞射及穿透式電子繞射分析結果指出,在改質後碳化緩衝層上能成長出無孔洞的高品質的立方晶型碳化矽薄膜。在電性方面,藉由霍爾效應量測可知,四階段製程成長的碳化薄膜為n型半導體,在經過擴散改質後,碳化矽薄膜的霍爾遷移率可從320 cm2/(V s) 提升至395 cm2/(V s),載子濃度也從1.6 × 1017 cm-3提升至2.7 × 1017 cm-3。
    擴散改質步驟中的溫度及時間對碳化緩衝層中原子排列及表面鍵結變化的效應也被深入的探討。根據X光光電子能譜儀的分析結果,在未經擴散改質前,緩衝層中只有部分的碳矽鍵結形成,碳碳鍵結和碳矽鍵結的比例約為7:3。經過7分鐘1300oC或是5分鐘1350 oC的擴散改質後,可將碳碳鍵結和碳矽鍵結的比例降低至1:9。表面鍵結比例的變化說明了擴散改質步驟能有效提升緩衝層表面碳矽鍵結並且影響後續成長之碳化矽薄膜的結晶特性。然而藉由高解析穿透式電子顯微鏡的觀察發現,雙晶及疊差等的面缺陷仍然存在於經過改質後的緩衝層中。殘餘的碳碳鍵結訊號(~10%)可能是來自於位於緩衝層與矽基板的介面及雙晶交界處不規則的原子排列。最後並根據分析結果,提出並討論四階段成長法中碳化緩衝層的可能形成機制。
    在矽甲烷-甲烷-氫氣反應氣體系統中,我們探討有關四階段成長法中各步驟的實驗參數對碳化矽薄膜結晶特性的影響,並比較矽甲烷-甲烷-氫氣與矽甲烷-丙烷-氫氣兩者結果的差異。實驗結果顯示,當使用甲烷為碳源成長立方晶型碳化矽薄膜時,其結晶特性較差,碳化緩衝層也因為碳化不完全,造成較粗糙的表面形貌並且有介面孔洞的存在。甲烷熱裂解效率較低是導致碳化不完全的主要原因。X光光電子能譜的分析結果顯示出以甲烷為碳源所成長的碳化緩衝層,除了具有和以丙烷為碳源的緩衝層一樣的碳碳鍵結與碳矽鍵結之外,還存在部分的碳氫鍵結。此一碳氫鍵結的存在可能是導致薄膜結晶特性較差的原因。

    Contents Abstract (Chinese) …………………………………………………………………...I Abstract (English)…………………………………………………………………..III Acknowledgements (Chinese)………………………………………………….……V Contents……………………………………………………………………………..VI List of Tables………………………………………………………………………...IX List of Figures ……………………………………………………………………….X Chapter 1 Introduction………………………………………………………………1 1-1 Background of SiC.............................................................................................1 1-2 General properties of SiC...................................................................................3 1-2-1 thermal properties.....................................................................................3 1-2-2 electric properties………………………………………………………..4 1-2-3 other physical properties……………………………………………….. 6 1-3 Applications of SiC……………………………………………………………7 1-4 Motivations and objectives……………………………………………………8 1-5 Organization of the thesis……………………………………………………10 References………………………………………………………………………..15 Chapter 2 Background study and literature review………………………………18 2-1 Bulk SiC growth...............................................................................................18 2-1-1 Acheson method.....................................................................................18 2-1-2 Lely growth method...............................................................................19 2-1-3 Sublimation growth method...................................................................19 2-1-4 Liquid Phase Epitaxy (LPE)...................................................................21 2-2 Epitaxial SiC growth…………………………………………………………22 2-2-1 Molecular Beam Epitaxy (MBE)………………………………………22 2-2-2 Chemical Vapor Deposition……………………………………………24 2-2-2-1 Homo-epitaxy………………………………………………….25 2-2-2-2 Hetero-epitaxy…………………………………………………27 References………………………………………………………………………..43 Chapter 3 Experimental 3-1 Experimental flow chart……………………………………………………...49 3-2 Low pressure chemical vapor deposition system…………………………….50 3-3 3C-SiC samples growth procedure…………………………………………..51 3-4 Atomic force microscope (AFM)…………………………………………….52 3-5 X-ray diffraction (XRD)……………………………………………………..52 3-6 Field emission scanning electron microscope (FESEM)…………………….53 3-7 High resolution transmission electron microscope (HRTEM)……………….54 3-8 X-ray photoemission spectra (XPS)...………………………………………..54 3-9 Hall effect measurement……………………………………………………..55 References………………………………………………………………………..62 Chapter 4 Growth of 3C-SiC on Si(100) by low pressure chemical vapor deposition using a modified four-step process………………………...63 4-1 Introduction…………………………………………………………………..64 4-2 Experimental…………………………………………………………………66 4-3 Results and discussion……………………………………………………….67 4-4 Conclusions…………………………………………………………………..72 References………………………………………………………………………..78 Chapter 5 Crystal quality of 3C-SiC influenced by the diffusion step in the modified four-step method……………………………………………..80 5-1 Introduction…………………………………………………………………..81 5-2 Experimental…………………………………………………………………84 5-3 Results and discussion……………………………………………………….85 5-4 Conclusions…………………………………………………………………..86 Reference…………………………………………………………………………98 Chapter 6 Growth of 3C-SiC films on Si(100) using a modified four-step method in the mixed gas of SiH4 and CH4……………………………………101 6-1 Introduction…………………………………………………………………102 6-2 Experimental………………………………………………………………..104 6-3 Results and discussion……………………………………………………...105 6-4 Conclusions…………………………………………………………………111 Reference………………………………………………………………………..112 Chapter 8 Conclusions…………………………………………………………….121 Publications List of Tables Table 1-1 Properties of SiC and other semiconductors………………………………14 Table 4-1 Typical experimental parameters at each step in the four-step method…...77 Table 5-1 Optimal experimental parameters at each step in the modified four-step method……………………………………………………………………97 Table 5-2 FWHM of the SiC(200) peak and the area percentages of the C–C and C–Si bonds de-convoluted from C 1s core level spectra taken from the samples treated with different diffusion conditions (temperature and process time)……………………………………………………………………….97 Table 6-1 Optimal experimental parameters at each step in the modified four-step method for the case of CH4……………………………………………..117 List of Figures Fig. 1-1 The sp3 tetrahedral covalent bonding structure of SiC……………………...11 Fig. 1-2 Some common SiC crystal polytypes, 3C, 2H, 4H and 6H…………………11 Fig. 1-3 The zinc-blende crystal structure……………………………………………12 Fig. 1-4 The comparisons of JFM and KEM in the different semiconductors……….12 Fig. 1-5 Experimental SiC (symbols) and theoretical SiC and silicon (lines) specific on resistance plotted as a function of breakdown voltage………………...13 Fig. 2-1 (a) Schematic of a crucible for Lely growth. (b) Hexagonal SiC platelet crystal……………………………………………………………………...32 Fig. 2-2 (a) Schematic of a crucible for sublimation; (b) sublimation of a SiC source and transport of vapor species to the growing surface……………………..32 Fig. 2-3 Schematics of three kinds of LPE process: (a) a traveling solvent method; (b) slow cooling technique. (c) top seeded solution growth method ………….33 Fig. 2-4 Si-C phase diagram………………………………………………………… 34 Fig. 2-5 Schematic of experimental set-up for SiC LPE growth …………………….34 Fig. 2-6 Schematic of the MBE system ……………………………………………...35 Fig. 2-7 Principle of a CVD process……………………………………...………….35 Fig. 2-8 Schematics of cold wall and hot wall CVD system…………………………36 Fig. 2-9 Schematic of step-controlled epitaxy in SiC homoepitaxial growth. (a) top-view (b) cross-sectional view………………………………………37 Fig. 2-10 The temperature profile of buffer layer technology developed by Nishino et al……………………………………………………………………………38 Fig. 2-11 Optical microscopy image of 3C-SiC surface grown on a Si(100) substrate……………………………………………………………………38 Fig. 2-12 Illustration of planar defects in 3C-SiC. (a) twin boundaries; (b) anti-phase boundaries………………………………………………………………….39 Fig. 2-13 (a) Schematic structure of the surface of undulant Si. (b) The elimination model of twin boundaries in the 3C-SiC layer on undulant Si…………….40 Fig. 2-14 TEM images of 3C-SiC grown on SOI substrates…………………………41 Fig. 2-15 Void formation and nucleation mechanism schematic diagram. (a) low, (b) medium, and (c) high nucleation density.. ………………………………...41 Fig. 2-16 The appearance of the 3C-SiC film grown on a 6 inch Si wafer…………..42 Fig. 3-1 Schematic of the horizontal cold-wall-type low pressure chemical vapor deposition system…………………………………………………………..57 Fig. 3-2 Schematic of the modified four-step method……………………………….57 Fig. 3-3 Schematic of AFM measurement…………………………………………...58 Fig. 3-4 Schematics of X-ray diffraction (a) □-2□ mode and (b) rocking curve method……………………………………………………………………...59 Fig. 3-5 Mechanism of photoelectrons generation …………………………………..60 Fig. 3-6 Schematic of XPS with hemispherical electron energy analyzer...................60 Fig. 3-7 Schematic of the van der Pauw configuration used to measure the Hall voltage (VH)....................................................................................................61 Fig. 4-1 Schematic showing the modified method for the growth of 3C-SiC on Si(100). (a) Four-step (clean, carburization, diffusion, and growth). (b) Three-step (clean, carburization and growth)…………………………………………..73 Fig. 4-2 SEM images showing the morphologies of 3C-SiC films on Si (100) under different growth conditions: (a) 3-step (without diffusion) and (b) 4-step (with diffusion). The cross-sectional view SEM images are inserted in the upper-right corners………………………………………………………….74 Fig. 4-3 (a) X-ray diffraction spectra of the 3C-SiC/Si(100) samples in Fig. 2. The prominent peak at 2□ = 41.5° is diffracted from 3C-SiC(200). The X-ray rocking curve of 3C-SiC(200) is inserted in the upper-left corner. (b) Electron diffraction pattern taken from the 3C-SiC/Si(100) interface……75 Fig. 4-4 Carbon 1s XPS spectra of (a) as-carburized Si(100) (after the 2nd step) and (b) as-diffused 3C-SiC/Si(100) (after the 3rd step)……………………………76 Fig. 5-1 Schematic showing the processes for the growth of 3C-SiC on Si. (a) The modified four-step method. (b) The modified four-step method without the growth step…………………………………………………………………92 Fig. 5-2 XRD spectra of the 3C-SiC films grown on Si(100) by the modified four-step method at different diffusion conditions. (a) 1300 °C and (b) 1350°C………...............................................................................................93 Fig. 5-3 C 1s core level spectra of the as-diffused 3C-SiC/Si(100) samples as a function of temperature and process time: (a) 1300 and (b) 1350°C. The curve-fit results are marked with C–C and C–Si to represent their corresponding bonding components………………………………………94 Fig. 5-4 Cross-sectional view TEM micrographs taken from the as-caburized layer /Si(100) interface. (a) Bright-field TEM image. (b) ED pattern from FFT. (C) IFFT image of as-carburized layer. (d) IFFT image of Si…………………95 Fig. 5-5 Cross-sectional view TEM micrographs taken at the SiC/Si(100)interface. (a) Bright-field TEM image. (b) HRTEM lattice image. Three different regions (I, II, and III) are circled to obtain the FFT images equivalent to ED patterns……………………………………………………………………96 Fig. 6-1 XRD spectra of the 3C-SiC films grown on Si(100) at different conditions. (a) different flow ratio of SiH4 and CH4 at growth step. (b) different CH4 flow rate, (c) different temperature and (d) different time used in carburized step………………………………………………………………………...112 Fig. 6-2 XRD spectra of the 3C-SiC films grown on Si(100) by the modified four-step method in different mixed gas……………………………………………113 Fig. 6-3 SEM images showing the morphologies of 3C-SiC films grown on Si (100) in different mixed gas. (a) SiH4 and CH4. (b) SiH4 and C3H8. The cross-sectional view SEM images are inserted in the upper-right corners...114 Fig. 6-4 AFM images of as-carburized layer grown in different carbon precursor and further diffused in H2 for 5 min. (a) and (c) are CH4; (b) and (d) are C3H8.115 Fig. 6-5 C 1s XPS spectra of (a) as-carburized layer and (b) as- diffused layer using CH4 as precursor…………………………………………………………...116

    ch1
    1. J. Bardeen and W.H. Brattain, Phys. Rev., 74, (1948), 230,.
    2. J. B. Casady and R. W. Johnson, Solid-State Electron., 39, (1996), 1409.
    3. C. M. Zettetling,. Process Technology for Silicon Carbide DeVice; Institution of Electrical Engineers: London, 2002; Chapter 1, pp 4-6.
    4. J. D. Parsons, R.F. Bunshah, O.M. Stafsudd, Solid State Technol. 133, (1985), 1409
    5. E. O. Johnson, RCA Rev., 26 (1965), 163.
    6. R.W. Keyes, Proc. IEEE ,60, (1972), 225.
    7. R. F. Davis, Physica B 185, (1992), 1.
    8. T. Kimoto, Q. Wahab, A. Ellison, U. Forsberg, M. Tuominen, R. Yakimova, A. Henry and E. Janzen, Materials Science Forum, 264-268, (1998), 921.
    9. L. Patrick, W.J. Choyke, Phys. Rev. B, 2, (1970), 2255.
    10. J. D. Hwang, Y. K. Fang, Y. J. Song, D. N. Yaung, Jpn. J. Appl. Phys. Part 1-Regular Papers Short Notes & ReviewPapers, 34, (1995), 1447.
    11. V. E. Chelnokov, A. L. Syrkin, Mater. Scie. and Eng. B, 46, (1997), 248.
    12. M. Bhatnagar and B. J. Baliga, IEEE Trans. Electron Devices, 40, (1993), 645.
    13. Gmelin, Handbook of Inorganic Chemistry, 8th Edition, Springer-Verlag, Heidelberg, New York, (1986).
    14. Y. S. Park. SiC Materials and Devices (Academic Press), 52, (1998).
    15. V. B. Shields, M. A. Ryan, R. M. Williams, M. G. Spencer, D. M. Collins and D. Zhang, Proceedings of the Sixth International Conference on Silicon Carbide and Related Materials, 142, (1995), 1067.
    16. G. Krötz, CH. Wagner, W. Legner, H. Sonntag, H. Möller and G. Müller, Proceedings of the Sixth International Conference on Silicon Carbide and Related Materials, 142, (1995), 829.
    17. S. Yoshida, K. Sasaki, E. Sakuma, S. Misawa and S. Gonda, Appl.Phys. Lett., 46, (1985), 766.
    18. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys., 76, (1994), 1363.
    19. J. W. Palmour, H. S. Kong and R. F. Davis, J. Appl. Phys.,64, (1988), 2168.
    20. V. E. Chelnokov, A. L. Syrkin, and V. A. Dmitriev, Diamond and Related
    Materials, 6, (1997), 1480.
    21. M. Bhatnagar and B. J. Baliga, IEEE Trans. Electron Devices, 40, (1993), 645.
    22. J. D. Maun, P. B. Sunderland and D. L.Urban, Applied Optics, 46, (2007), 483
    23. M. Kazan, , A. Bruyant, P. Royer and P. Masri, Surface Science Reports, 65, (2010), 111.
    24. Z. Y. Juang, C. Y. Wu, C. W. Lo, W. Y. Chen, C. F. Huang, J. C. Hwang, F. R. Chen, K. C. Leou and C. H. Tsai, , Carbon, 47, (2009), 2026.
    25. A. Chayahara, A. Masuda, T. Imura, Y. Osaka, Japn. J. Appl. Phys. Part 2-Letters, 25, (1986), L564.

    ch2
    1. J. A. Lely, Ber. Deut. Keram. Ges. 32, (1955), 229.
    2. W. F. Knippenberg, Philips Res. Rep. 18, (1963), 229.
    3. C. J. Kapteyns and W. F. Knippenberg, J. Cyst. Growth, 7 (1970) 20.
    4. Yu. M. Tairov and V. F. Tsvertkov, J. Cryst. Growth, 52 (1981) 146.
    5. T. Nakata, K. Koga, Y. Matsushita, Y. Ueda, T. Niina, Springer Proc. Phys. 43 (1989), 26.
    6. H. M. Hobgood, D. L. Barett, J. P. McHugh, R. C. Clarke, S. Siram, A. A. Burk, J. Greggi, C. D. Brandt, R. H. Hopkins, W. J. Choyke, J. Cryst. Growth, 137, (1994), 181.
    7. T. Cloitre, N. Moreaud, P. Vicente, M. L. Sadowsk and R. L. Aulombard, Material Science Forum, 353-356, (2001), 159.
    8. G. Wagner and K. Irmscher, Material Science Forum, 353-356, (2001), 95.
    9. C. H. Carter Jr., R. Glass, M. Brady, D. Malta, D. Henshall, S. Müller, V. Tsvetkov, D. Hobgood and A. Powell. Material Science Forum, 353-356, (2001), 3.
    10. D. H. Hofmann and M. H. Muller, Mater. Sci. Eng. B61-62, (1999), 29.
    11. R. T. Yakimova and A. A. Kalnin, Phys. Stat. Sol. (a), 32, (1975), 297.
    12. H. J. Davies, Physics of Low-Dimensional semiconductors: an introduction. Cambridge University Press, 1997.
    13. A. Fissel, B. Schröter, W. Richter, Appl. Phys. Lett., 66, (1995), 3182.
    14. G. G. Condorelli, A. Baeri, I. L. Fragala, V. Lauretta and G. Smerlo, Materials Science in Semiconductor Processing, 5, (2002), 135
    15. D. Steigerwald, S. Rudaz, H. Liu, R. S. Kern, W. Gotz, R. Fletcher, JOM., 49, (1997), 18
    16. Y. Furumura, M. Doki, F. Mieno, T. Eshita, T. Suzuki, M. Maeda, J. Electrochem. Soc., 135, (1988), 1255.
    17. T. Kimoto, A. Itoh and H. Matsunami, Phys. Status Solidi (b) 202, (1997), 247
    18. P. G. Neudeck, Materials Science Forum, 338-342, (2000), 1161
    19. J. A. Powell and D. J. Larkin, Phys. Status Solidi (b) 202, (1997), 529
    20. B. S. Sywe, Z. J. Yu, S. Burckhard, J. Edgar and J. Chaudhuri, J. Electrochem. Soc., 141, (1994), 510.
    21. K. A. Jacobson, J. Electrochem. Soc., 118, (1971), 127.
    22. H. Matsuname, S. Nishino and T. Tanaka, J. Crystl. Growth, 45, (1978), 138.
    23. C. J. Mogab and H. J. Leamy, J. Appl. Phys., 45, (1974), 1075.
    24. S. Nishino, Y. Hazuki, H. Matsunami and T. Tanaka, J. Electrochem. Soc., 127, (1980), 2674.
    25. S. Nishino, J. A. Powell and H. A. Will, Appl. Phys. Lett. 42, (1983), 124.
    26. A. J. Steckl and J. P. Li, IEEE Trans. Electron. Devices, 39, (1992), 64.
    27. P. Liaw and R. F Davis, J. Electrochem. Soc., 132, (1985), 642.
    28. J. A Powell, L. G. Matus and M. A. Kuczmarsk, J. Electrochem. Soc., 134, (1987), 1558.
    29. J. D Hwang, Y. K Fang,.Y. U Song and D. N Yaung,. Jpn. J. Appl. Phys., 34, (1995), 1447.
    30. K. Ikoma, M. Yamanaka, H. Yamaguchi and Y. Shichi, J. Electrochem. Soc., 138, (1991), 3028.
    31. H. Nagasawa, K. Yagi and T. Kawahara, J. Crystal Growth, 237-239, (2002), 1244.
    32. J. P. Li and A. J. Steckl, J. Electrochem. Soc. 142, (1995), 634.
    33. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino and P. Pirouz, J. Appl. Phys., 78, (1995), 5136.
    34. M. I. Chaudhry and R. L. Wright, J. Mater. Res., 5, (1990), 1595.
    35. A. Solangi and M. I. Chaudry, J. Mater. Res., 7, (1992), 539.
    36. K. Takahashi, S. Nishino and J. Saraie, J. Electrochem. Soc., 139, (1992), 3565.
    37. C. Yuan, A. J. Steckl and M. J. Loboda, Appl. Phys. Lett., 64, (1994), 3000.
    38. K. Shibahara, S. Nishino and H. Matsunami, J. Cryst. Growth, 78, (1986), 538.
    39. A. Suzuki, K. Furukawa, Y. Higashigaki, S. Harada, S. Nakajima and T. Inoguchi, J. Cryst. Growth, 70, (1984), 287.
    40. A. J. Steckl, S. A. Mogren, M.W. Roth and J.P. Li, Appl. Phys. Lett., 60, (1992), 1495.
    41. K. Yagi and H. Nagasawa, Mater. Sci. Forum, 264-268, (1998), 191.
    42. G. D’Arrigo, A. Severino, C. Locke, G. Milazzo, C. Bongiorno, N. Piluso, S. Saddow and F. L. Via, 2010 MRS Spring Meeting, Oral presentation.
    43. F. Wischmeyer, W. Wondrak, D. Leidich and E. Niemann, Mater. Sci. Eng., B61-62, (1999), 563.
    44. J. H. Park, J. H. Kim, Y. Kim, B.T. Lee, S. J. Jang, C. K. Moon and H. J. Song, Appl. Phys. Lett., 83, (2003), 1989
    45. C. K. Moon, H. J. Song, J. K. Kim, J. H. Park, S. J. Jang, J. B. Yoo, H. R. Park and B. T. Lee, J. Mater. Res., 16, (2001), 24.
    46. N. Planes, H. Moller, J. Camassel, Y. Stoemenos, L. Falkovski, M. Eickhoff and G. Krotz, Mater. Sci. Forum, 338–342, (2000), 301.
    47. H. Moller, J. Camassel, M. Eickhoff, A. Nielsen, V. Papaioannou and J. Stoemenos, J. Electrochem. Soc., 148, (2001), G16.
    48. A. Severino, G. D’Arrigo, C. Bongiorno, S. Scalese, F. La Via and G. Foti, J. Appl. Phys. 102, (2007), 023518.
    49. L. S. Hong and C. M. Wu, J. CIChE, 31, (2000), 79.
    50. P. R. Choudhury and H. Formiguchi, J. Electrochem. Soc., 116, (1969), 1440.
    51. C. S. Liu, L. S. Hong and M. S. Hu, J. Phys. Chem. of Solids, 69, (2008) 576.
    52. H. Nagasawa and K, Yagi, Phys. Status Solidi B, 202, (1997), 335.
    53. C. H. Wu, C. Jacob, X. J. Ning, S. Nishino and P. Pirouz, J. Cryst. Growth, 158 (1996), 480.
    54. C. W. Liu and J. C. Sturm , J. Appl. Phys., 82, (1997), 4558.
    55. J. Hoffmann and S. Veprek, Thin Solid Films, 318, (1998), 18.
    56. B. T. Lee, D. K. Kim, C. K. Moon, J. K. Kim, Y. H. Seo, K. S. Nahm, H. J. Lee, K. W. Lee, K. S. Yu, Y. Kim and S. J. Jang, J. Mater. Res., 14, (1999), 24.
    57. G. Ferro, J. Camassel, S. Juillaguet, C. Balloud, E.K. Polychroniadis, Y. Stoemenos, J. Dazord, H. Peyre, Y. Monteil, S.A. Rushworth and L.M. Smith, Semiconductor Science and technology, 18, (2003), 1015.
    58. Y. H. Seo, K. S. Nahm, E. K. Suh, Y. H. Lee, H. J. Lee and Y. G. Hwang, Compound semiconductor 1995, 145, (1996), 209.
    59. Y. H. Seo, K.S. Nahm, E. K. Suh, H. J. Lee and Y. G. Hwang, J. Vac. Sci. Technol. A, 15, (1997), 2226.
    60. K. C. Kim, K. S. Nahm, Y. B. Hahn, Y. S. Lee and H. S. Byun, J. Vac. Sci. Technol. A ,18, (2000), 891.
    61. L. S. Hong, S. Misawa, H. Okumura, S. Yoshida, Silicon Carbide and Related Materials. Inst. Phys. Conf. Ser. No. 137, (1994), 239.
    62. Y. Ishida, T. Takahashi, H. Okumura, S. Yoshida and T. Sekigawa, Jpn. J. Appl. Phys., Part 1, 36, (1997), 6633.
    63. Y. Ishida, T. Takahashi, H. Okumura, K. Arai, and S. Yoshida, Chem. Vap. Deposition, 12, (2006), 495
    64. H. Nagasawa, K. Yagi, T. Kawahara and N. Hatta, Chem. Vap. Deposition, 12, (2006), 502

    ch3
    1. J. C. Vickerman, surface Analysis: the principal techniques (John & Sons, U.K., 1997) P. 74.

    ch4
    1. C. M. Zettetling, Process Technology for Silicon Carbide Device; Institution of Electrical Engineers: London, 2002, Chapter 1, pp 4-6.
    2. J. B. Casady and R. W. Johnson, Solid-State Electronics, 39, (1996), 1409.
    3. J. W. Palmour, J. A. Edmonda, H. S. Konga and C. H. Carter, Physica B, 185, (1993), 461.
    4. C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C. Thero and M. Bhatnagar, IEEE Trans. Electron. Devices, 43, (1996), 1732.
    5. S. Nishino, J. A. Powell and H. A. Hill, Appl. Phys. Lett., 42, (1983), 460.
    6. A. J. Steckl and J. P. Li, IEEE Trans. Electron. Devices, 39, (1992), 64.
    7. P. Liaw and R. F. Davis, J. Electrochem. Soc., 132, (1985), 642.
    8. J. A. Powell, L. G.. Matus and M. A. Kuczmarsk, J. Electrochem. Soc., 134, (1987), 1558.
    9. J. D. Hwang, Y. K. Fang, Y. U. Song and D. N. Yaung, Jpn. J. Appl. Phys., 34, (1995), 1447.
    10. K. Ikoma, M. Yamanaka, H. Yamaguchi and Y. Shich, J. Electrochem. Soc., 138, (1987), 3028.
    11. H. Nagasawa, K. Yagi and T. Kawahara, J. Crystal Growth, 237-239, (2002), 1244.
    12. J. P. Li and A. J. Steckl, J. Electrochem. Soc., 142, (1995), 634.
    13. R. Scholz, U. Gösele, E. Niemann and F.Wischmeyer, Appl. Phys. A, 64, (1997), 115.
    14. M. Uchida and M. Kitabatake, Thin Solid Films, 335, (1998), 32.
    15. H. Shimizu and K. Hisada, Mater. Sci. forum, 433-436, (2003), 229.
    16. A. Gupta, J. Sengupta and C. Jacob, Thin Solid Films, 516, (2008), 1669.
    17. S. Nishino, Y. Hazuki,; H. Matsunami and T. Tanaka, J. Electrochem. Soc., 127, (1980), 2674.
    18. M. I. Chaudhry and R. L. Wright, J. Mater. Res., 5, (1990), 1595
    19. H. Nagasawa, K. Yagi, T. Kawahara and N. Hatta, Chem. Vap. Deposition, 12, (2006), 502
    20. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino and P. Pirouz, J. Appl. Phys., 78, (1995), 5136
    21. J. P. Li, A. J. Steckl, I. Golecki, F. Reidinger, L. Wang, X. J. Ning and P. Pirouz, Appl. Phys. Lett., 62, (1993), 3135.
    22. D. J. Young, J. Du, C. A. Zorman and W. H. Ko, IEEE Sensors Journal, 4, (2004) 464.
    23. H. Nagasawa and K. Yagi, Phys. Stat. sol. (b), 202, (1997), 335

    ch5
    1. C. M. Zettetling, Process Technology for Silicon Carbide Device, p. 4, Institution
    of Electrical Engineers, London (2002).
    2. J. B. Casady and R. W. Johnson, Solid-State Electron., 39, (1996), 1409.
    3. J. W. Palmour, J. A. Edmonda, H. S. Konga, and C. H. Carter, Physica B, 185, (1993), 461.
    4. C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C.
    Thero, and M. Bhatnagar, IEEE Trans. Electron Devices, 43, (1996), 1732 .
    5. S. Nishino, J. A. Powell, and H. A. Hill, Appl. Phys. Lett., 42, (1983), 460.
    6. A. J. Steckl and J. P. Li, IEEE Trans. Electron Devices, 39, (1992), 64.
    7. P. Liaw and R. F. Davis, J. Electrochem. Soc., 132, (1985), 642.
    8. J. A. Powell, L. G. Matus, and M. A. Kuczmarsk, J. Electrochem. Soc., 134, (1987), 1558.
    9. J. D. Hwang, Y. K. Fang, Y. U. Song, and D. N. Yaung, Jpn. J. Appl. Phys., Part 1, 34, (1995), 1447.
    10. K. Ikoma, M. Yamanaka, H. Yamaguchi, and Y. Shich, J. Electrochem. Soc., 138,
    (1991), 3028 .
    11. H. Nagasawa, K. Yagi, and T. Kawahara, J. Cryst. Growth, 237–239, (2002), 1244.
    12. H. J. Kim, R. F. Davis, X. B. Cox, and R. W. Linton, J. Electrochem. Soc., 134, (1987), 2269 .
    13. C. C. Chiu and S. B. Desu, J. Mater. Res., 8, (1993), 535.
    14. J. P. Li and A. J. Steckl, J. Electrochem. Soc., 142, (1995), 634 .
    15. G. Ferro, Y. Monteil, H. Vincent, V. Thevenot, M. D. Tran, F. Cauwet, and J. Bouix, J. Appl. Phys., 80, (1996),4691 .
    16. A. Severino, G. D’Arrigo, C. Bongiorno, S. Scalese, F. La Via, and G. Foti, J. Appl. Phys., 102, (2007), 023518.
    17. R. Scholz, U. Gösele, E. Niemann, and D. Leidich, Appl. Phys. Lett., 67, (1995), 1453
    18. R. Scholz, U. Gösele, E. Niemann, and F. Wischmeyer, Appl. Phys. A: Mater. Sci.
    Process., 64, (1997), 115.
    19. V. Cimalla, Th. Stauden, G. Eichhorn, and J. Pezoldt, Mater. Sci. Eng., B, 61–62, (1999), 553.
    20. J. Yun, T. Takahashi, T. Mitani, Y. Ishida, and H. Okumura, J. Cryst. Growth, 291, (2006), 148.
    21. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, J. Appl. Phys., 78, (1995), 5136.
    22. W. Y. Chen, C. C. Chen, J. Hwang, and C. F. Huang, Cryst. Growth Des., 9, (2009), 2616.
    23. S. Nishino, Y. Hazuki, H. Matsunami, and T. Tanaka, J. Electrochem. Soc., 127, (1980), 2674 .
    24. K. Yagi and H. Nagasawa, Mater. Sci. Forum, 264–268, (1998), 191.

    ch6
    1. C. M. Zettetling, Process Technology for Silicon Carbide Device; Institution of Electrical Engineers: London, 2002, Chapter 1, pp 4-6.
    2. J. B. Casady and R.W. Johnson, Solid-State Electronic, 39, (1996), 1409.
    3. C. E. Weitzel, J. W. Palmour, C. H. Carter, K. Moore, K. J. Nordquist, S. Allen, C. Thero and M. Bhatnagar, IEEE Trans. Electron devices, 43, (1996), 1732
    4. C. E. Weitzel, Silicon Carbide, III-Nitrides and Related Materials, Parts 1 and 2, 264-2, (1998), 907
    5. S. Nishino, J. A. Powell and H. A. Hill, Appl. Phys. Lett., 42, (1983), 460.
    6. A. J. Steckl and J. P. Li, IEEE Trans. Electron. Devices, 39, (1992), 64.
    7. P. Liaw and R. F. Davis, J. Electrochem. Soc., 132, (1985), 642.
    8. J. A. Powell, L. G.. Matus and M. A. Kuczmarsk, J. Electrochem. Soc., 134, (1987), 1558.
    9. J. D. Hwang, Y. K. Fang, Y. U. Song and D. N. Yaung, Jpn. J. Appl. Phys., 34, (1995), 1447.
    10. K. Ikoma, M. Yamanaka, H. Yamaguchi and Y. Shich, J. Electrochem. Soc., 138, (1987), 3028.
    11. H. Nagasawa, K. Yagi and T. Kawahara, J. Crystal Growth, 237-239, (2002), 1244.
    12. W. Munch and U. Ruhnau, J. Crys. Growth, 158, (1996), 491.
    13. C. S. Liu, L. S. Hong and M. S. Hu, J. Phys. Chem. of Solids, 69, (2008) 576.
    14. Y. Gao, J. H. Edgar, J. Chaudhuri, S. N. Cheema, M. V. Sidorov and D. N. Braski, J. Cryst. Growth, 191, (1998), 439
    15. H. Nagasawa and Y. Yamaguchi, Thin Solid Films, 225, (1993), 230
    16. S. Katirgioglu, Int.J. Mod. Phys. B, 16, (2002), 2191
    17. P. Mandracci, S. Ferrero, G. Cicero, F. Giorgis, C.F. Pirri, G. Barucca, R. Reitano, P. Musumeci, L. Calcagno and G. Foti, Thin Solid Films, 383, (2001), 169.
    18. A. Tabata, Y. Komura, T. Narita and A. Kondo, Thin Solid Films, 517, (2009), 3516.
    19. W. Y. Chen, C. C. Chen, J. Hwang and C.F. Huang, Cryst. Growth Design, 9, (2009), 2616.
    20. W. Y. Chen, W. L. Wang, J. M. Liu, C. C. Chen, J. Hwang, C. F. Huang and Li Chang, J. Electrochem. Soc., 157, (2010), H377.
    21. S. Nishino, Y. Hazuki,; H. Matsunami and T. Tanaka, J. Electrochem. Soc., 127, (1980), 2674.
    22. H. Nagasawa, K. Yagi, T. Kawahara and N. Hatta, Chem. Vap. Deposition, 12, (2006), 502
    23. J. P. Li and A. J. Steckl, J. Electrochem. Soc., 142, (1995), 634.
    24. L. Muehlhoff, W. J. Choyke, M. J. Bozack, J. T. Yates Jr., J. Appl, Phys, 60, (1986), 2842.
    25. D. J. Hautman, R. J. Santoro, F. L. Dryer and I. Glassman, Int. J. Chem. Kinet. 13, (1981), 149
    26. T. Yoshinobu, H. Mitsui, Y. Tarui, T. Fuyuki and H. Matsunami, Jpn. J. Appl. Phys. 31, (1992), L1580

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE