研究生: |
蔡俊穎 Tsai, Chun Ying |
---|---|
論文名稱: |
穿透式電子顯微鏡之空錐照射暗場像於生物樣品之應用 Hollow Cone Electron Imaging for Biological Materials |
指導教授: |
陳福榮
Chen, Fu Rong |
口試委員: |
曾繁根
Tseng, Fan Gang 張立 Cheng, Li 謝達斌 Shieh, Dar Bin 林澤勝 Lin, Tse Sheng |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 空錐照射暗場像 、穿透式電子顯微鏡 、單分子重構 、臨場濕式電子顯微鏡 、低溫電子顯微鏡 |
外文關鍵詞: | Hollow Cone Dark Field, Transmission Electron Microscopy, Single Particle Reconstruction, in situ Liquid EM, Cryo EM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討以收集生物樣品之熱漫散射(Thermal Diffuse Scattering)電子的”空錐照射暗場像 (Hollow Cone Dark Field, HCDF)”來增強生物樣品在電子顯微鏡中的對比,並針對三種生物樣品製備方式進行實驗。在本論文中,就生物樣品製備可以分成三大部分:(一)負染生物樣品,(二)低溫生物樣品,(三)臨場濕式生物樣品。在第一部份我們先以醋酸鈾醯負染GroEL蛋白質做為樣品,針對負染GroEL蛋白質找出空錐照射暗場像之最佳化拍攝條件並證明空錐照射暗場像能夠提升生物樣品對比,最後藉由單分子三維重構技術重建出GroEL 13.57Å三維結構。在第二部分中,我們開發出一套應用於低溫電子顯微鏡之空錐照射暗場像拍攝流程,成功取得微脂體約2奈米的磷脂雙層膜。接著我們拍攝幾種低溫生物樣品,包含:KLH (Keyhole Limpet Hemocyanin)蛋白質、腺病毒與魚類神經壞死病毒,並驗證HCDF能夠提升約四倍對比。同時,對NNV病毒影像進行單分子三維重構,發現三維重構結果無法收斂並探討其原因。第三個部分是以自行開發的臨場濕式樣品桿與臨場濕式晶片觀察磁性細菌(Magnetospirillum magnetotacticum, MS-1),以磁性細菌中的磁小體來定位細菌位置。從影像上得知HCDF對比約為明場像之五倍,且可觀察到較清楚之細菌外型。
In this dissertation, we present a new route to achieve the same goals by hollow cone dark field (HCDF) imaging using thermal diffuse scattered (TDS) electrons giving about a 4 times contrast increase as compared to bright field imaging It can be divided into three topics: (1) negative staining, (2) Cryo-electron microscopy, and (3) in situ liquid cell TEM. In the first part, we demonstrated the optimum condition of HCDF and contrast enhancement by negative stained GroEL. After that, we demonstrated the 3D reconstruction of a negative stained GroEL particle can yield about 13.5Å resolution but using a strongly reduced number of images. In the second part, we established the process flow of HCDF technique for Cryo-EM field and demonstrated the concept by liposome. Later, we demonstrated the first result utilized HCDF technique in various biological sample including Keyhole Limpet Hemocyanin (KLH) protein, Adenovirus and Nervous Necrosis Virus (NNV) and the 3D reconstruction model of NNV. In the last part, we demonstrated the HCDF in in situ liquid TEM field and observed the Magnetospirillum magnetotacticum, (MS-1). We proved the HCDF technique provided contrast enhancement and more detail than tradition bright field mode.
1. Angert, I., Majorovits, E. & Schröder, R. R. Zero-loss image formation and modified contrast transfer theory in EFTEM. Ultramicroscopy 81, 203–222 (2000).
2. Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 9, 974–986 (1942).
3. Nagayama, K. Another 60 years in electron microscopy: Development of phase-plate electron microscopy and biological applications. J. Electron Microsc. (Tokyo). 60, 43–62 (2011).
4. Danev, R. & Nagayama, K. Transmission electron microscopy with Zernike phase plate. Ultramicroscopy 88, 243–252 (2001).
5. Lentzen, M. The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy 99, 211–220 (2004).
6. Hosokawa, F., Danev, R., Arai, Y. & Nagayama, K. Transfer doublet and an elaborated phase plate holder for 120 kV electron-phase microscope. J. Electron Microsc. (Tokyo). 54, 317–324 (2005).
7. Nagayama, K. Phase contrast enhancement with phase plates in electron microscopy. Adv. Imaging Electron Phys. 138, 69–146 (2005).
8. Yamaguchi, M., Danev, R., Nishiyama, K., Sugawara, K. & Nagayama, K. Zernike phase contrast electron microscopy of ice-embedded influenza A virus. J. Struct. Biol. 162, 271–276 (2008).
9. Danev, R. & Nagayama, K. Single particle analysis based on Zernike phase contrast transmission electron microscopy. J. Struct. Biol. 161, 211–218 (2008).
10. Nagayama, K. & Danev, R. Phase contrast electron microscopy: development of thin-film phase plates and biological applications. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 2153–2162 (2008).
11. Shiue, J. et al. Phase TEM for biological imaging utilizing a Boersch electrostatic phase plate: Theory and practice. J. Electron Microsc. (Tokyo). 58, 137–145 (2009).
12. Huang, S. H. et al. The fabrication and application of Zernike electrostatic phase plate. J. Electron Microsc. (Tokyo). 55, 273–280 (2006).
13. Fukuda, Y., Fukazawa, Y., Danev, R., Shigemoto, R. & Nagayama, K. Tuning of the Zernike phase-plate for visualization of detailed ultrastructure in complex biological specimens. J. Struct. Biol. 168, 476–484 (2009).
14. Murata, K. et al. Zernike phase contrast cryo-electron microscopy and tomography for structure determination at nanometer and subnanometer resolutions. Structure 18, 903–912 (2010).
15. Müller, H. et al. Design of an electron microscope phase plate using a focused continuous-wave laser. New J. Phys. 12, 1–5 (2010).
16. Shigematsu, H., Sokabe, T., Danev, R., Tominaga, M. & Nagayama, K. A 3.5-nm structure of rat TRPV4 cation channel revealed by zernike phase-contrast cryoelectron microscopy. J. Biol. Chem. 285, 11210–11218 (2010).
17. Rochat, R. H. et al. Seeing the portal in herpes simplex virus type 1 B capsids. J. Virol. 85, 1871–1874 (2011).
18. Matsumoto, T. & Tonomura, A. The phase constancy of electron waves traveling through Boersch’s electrostatic phase plate. Ultramicroscopy 63, 5–10 (1996).
19. Schultheiß, K., Párez-Willard, F., Barton, B., Gerthsen, D. & Schröder, R. R. Fabrication of a Boersch phase plate for phase contrast imaging in a transmission electron microscope. Rev. Sci. Instrum. 77, 1–4 (2006).
20. Cambie, R., Downing, K. H., Typke, D., Glaeser, R. M. & Jin, J. Design of a microfabricated, two-electrode phase-contrast element suitable for electron microscopy. Ultramicroscopy 107, 329–339 (2007).
21. Alloyeau, D. et al. Imaging of soft and hard materials using a Boersch phase plate in a transmission electron microscope. Ultramicroscopy 110, 563–570 (2010).
22. Barton, B., Joos, F. & Schr??der, R. R. Improved specimen reconstruction by Hilbert phase contrast tomography. J. Struct. Biol. 164, 210–220 (2008).
23. Chen, K. F. et al. Study of mean absorptive potential using Lenz model: Toward quantification of phase contrast from an electrostatic phase plate. Micron 39, 749–756 (2008).
24. Danev, R., Glaeser, R. M. & Nagayama, K. Practical factors affecting the performance of a thin-film phase plate for transmission electron microscopy. Ultramicroscopy 109, 312–325 (2009).
25. Danov, K., Danev, R. & Nagayama, K. Electric charging of thin films measured using the contrast transfer function. Ultramicroscopy 87, 45–54 (2001).
26. Danov, K., Danev, R. & Nagayama, K. Reconstruction of the electric charge density in thin films from the contrast transfer function measurements. Ultramicroscopy 90, 85–95 (2002).
27. Cowley, J. M. High resolution dark field electron microscopy. I. Useful approximations. Acta Crystallogr. Sect. A 29, 529–536 (1973).
28. Tsai, C., Chang, Y., Lobato, I., Van Dyck, D. & Chen, F. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins. Sci. Rep. 6, 27701 (2016).
29. Hall, C. E. Dark-Field Electron Microscopy. I. Studies of Crystalline Substances in Dark-Field. J. Appl. Phys. 19, 198 (1948).
30. Chiu, W. & Glaeser, R. M. Single atom image contrast: conventional dark-field and bright-field electron microscopy. J. Microsc. 103, 33–54 (1975).
31. Dupouy, G. Contrast improvement in electron microscopic images of amorphous objects. J. Electron Microsc. (Tokyo). 16, 5–16 (1967).
32. Bals, S., Kabius, B., Haider, M., Radmilovic, V. & Kisielowski, C. Annular dark field imaging in a TEM. Solid State Commun. 130, 675–680 (2004).
33. Bals, S., Van Tendeloo, G. & Kisielowski, C. A new approach for electron tomography: Annular dark-field transmission electron microscopy. Adv. Mater. 18, 892–895 (2006).
34. Leroux, F., Bladt, E., Timmermans, J.-P., Van Tendeloo, G. & Bals, S. Annular dark-field transmission electron microscopy for low contrast materials. Microsc. Microanal. 19, 629–34 (2013).
35. Zhang, C., Xu, Q., Peters, P. J. & Zandbergen, H. The use of a central beam stop for contrast enhancement in TEM imaging. Ultramicroscopy 134, 200–206 (2013).
36. Heinemann, K. HIGH-RESOLUTION ELECTRON MICROSCOPE IMAGES OF CRYSTAL LATTICE PLANES USING CONICAL ILLUMINATION. Appl. Phys. Lett. 16, 515 (1970).
37. Krakow, W. & Howland, L. A. A method for producing hollow cone illumination electronically in the conventional transmission microscope. Ultramicroscopy 2, 53–67 (1976).
38. Johansen, B. V., Namork, E. & Krekling, T. Hollow cone illumination-I. Dark-field electron microscopy of biological specimens. Micron 12, 13–23 (1981).
39. Riecke, V. W. D. Kann man die ‘atomare Auflösung’ im Elektronenmikroskop nur mit dem Dunkelfeld erreichen? Z. Naturf. 19, 1228–1230 (1964).
40. Kondo, Y., Ito, T. & Harada, Y. New Electron Diffraction Techniques Using Electronic Hollow-Cone Illumination. Jpn. J. Appl. Phys. 23, L178–L180 (1984).
41. Van Dyck, D. Is the frozen phonon model adequate to describe inelastic phonon scattering? Ultramicroscopy 109, 677–682 (2009).
42. Van Dyck, D. Persistent misconceptions about incoherence in electron microscopy. Ultramicroscopy 111, 894–900 (2011).
43. Wang, Z. L. Thermal diffuse scattering in sub-angstrom quantitative electron microscopy - Phenomenon, effects and approaches. Micron 34, 141–155 (2003).
44. Wang, Z. L. Phonon scattering: How does it affect the image contrast in high-resolution transmission electron microscopy? Philos. Mag. Part B 79, 37–48 (1999).
45. Wang, Z. L. Thermal diffuse scattering in sub-angstrom quantitative electron microscopy—phenomenon, effects and approaches. Micron 34, 141–155 (2003).
46. Sears, V. F. & Shelley, S. A. Debye–Waller factor for elemental crystals. Acta Crystallogr. Sect. A Found. Crystallogr. 47, 441–446 (1991).
47. Lobato, I. & Van Dyck, D. MULTEM: A new multislice program to perform accurate and fast electron diffraction and imaging simulations using Graphics Processing Units with CUDA. Ultramicroscopy 156, 9–17 (2015).
48. Bragg, L., Kendrew, J. C. & Perutz, M. F. Polypeptide Chain Configurations in Crystalline Proteins. Proc. R. Soc. A Math. Phys. Eng. Sci. 203, 321–357 (1950).
49. Max, F. P. & John, C. K. Nobel Lectures, Chemistry 1962, X-Ray Analysis of Haemoglobin, December 11, 1962. Nobel Lect. (1994).
50. De Rosier, D. J. & Klug, a. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).
51. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions. J. Struct. Biol. 128, 82–97 (1999).
52. Tang, G. et al. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
53. Frank, J. (Joachim). SPIDER and WEB : Processing and Visualization of Images in 3D Electron Microscopy and Related Fields. Struct. Biol. 116, 190–199 (1996).
54. Baxter, W. T., Leith, A. & Frank, J. SPIRE: The SPIDER Reconstruction Engine. J. Struct. Biol. 157, 56–63 (2007).
55. Yang, C. et al. The parallelization of SPIDER on distributed-memory computers using MPI. J. Struct. Biol. 157, 240–249 (2007).
56. Yan, X., Sinkovits, R. S. & Baker, T. S. AUTO3DEM-an automated and high throughput program for image reconstruction of icosahedral particles. J. Struct. Biol. 157, 73–82 (2007).
57. Zhou, Z. H. et al. Seeing the herpesvirus capsid at 8.5 A. Science 288, 877–80 (2000).
58. Zhou, Z. H. H. et al. Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat. Struct. Biol. 8, 868–73 (2001).
59. Zhang, X., Walker, S. B., Chipman, P. R., Nibert, M. L. & Baker, T. S. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat. Struct. Biol. 10, 1011–8 (2003).
60. Zhang, X. et al. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc. Natl. Acad. Sci. U. S. A. 105, 1867–1872 (2008).
61. Jiang, W. et al. Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus. Nature 439, 612–6 (2006).
62. Henderson, R., Rubinstein, J. L., Walker, J. E. & Henderson, R. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. Embo J 22, 6182–6192 (2003).
63. Gabashvili, I. S. et al. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100, 537–49. (2000).
64. Brenner, S. & Horne, R. W. A negative staining method for high resolution electron microscopy of viruses. Biochim. Biophys. Acta 34, 103–110 (1959).
65. Forte, G. M., Nichols, A. V. & Glaeser, R. M. Electron microscopy of human serum lipoproteins using negative staining. Chem. Phys. Lipids 2, 396–408 (1968).
66. Forte, T. M. & Nordhausen, R. W. in Methods in Enzymology 128, 442–457 (1986).
67. Biel, S. S. & Gelderblom, H. R. Diagnostic electron microscopy is still a timely and rewarding method. J. Clin. Virol. 13, 105–119 (1999).
68. Goldsmith, C. S. et al. Ultrastructural Characterization of SARS Coronavirus. Emerg. Infect. Dis. 10, 320–326 (2004).
69. Barreto-Vieira, D. F. & Barth, O. M. in Microbiology in Agriculture and Human Health 57, 120–128 (InTech, 2015).
70. Ludtke, S. J., Chen, D. H., Song, J. L., Chuang, D. T. & Chiu, W. Seeing GroEL at 6A resolution by single particle electron cryomicroscopy. Structure 12, 1129–1136 (2004).
71. Yao, B. et al. High contrast hollow-cone dark field transmission electron microscopy for nanocrystalline grain size quantification. Micron 41, 177–182 (2010).
72. Carrascosa, J., Abella, G., Marco, S. & Carazo, J. M. Three-dimensional reconstruction of the sevenfolded form of Bacillus subtilis Gro EL chaperonin. J. Struct. Biol. 104, 2–8 (1990).
73. Braig, K. et al. The crystal structure of the bacterial chaperonln GroEL at 2.8 Å. Nature 371, 578–586 (1994).
74. Ishii, N., Taguchi, H., Sumi, M. & Yoshida, M. Structure of holo-chaperonin studied with electron microscopy Oligomeric cpn10 on top of two layers of cpn60 rings with two stripes each. FEBS Lett. 299, 169–174 (1992).
75. Tsuprun, V. L., Boekema, E. J., Pushkin, A. V & Tagunova, I. V. Electron microscopy and image analysis of the GroEL-like protein and its complexes with glutamine synthetase from pea leaves. Biochim.Biophys.Acta 1099, 67–73 (1992).
76. Saibil, H. R. et al. ATP induces large quaternary rearrangements in a cage-like chaperonin structure. Curr. Biol. 3, 265–273 (1993).
77. Harris, J. R., Plückthun, A. & Zahn, R. Transmission electron microscopy of GroEL, GroES, and the symmetrical GroEL/ES complex. J. Struct. Biol. 112, 216–30 (1994).
78. Mou, J., Sheng, S. J., Ho, R. & Shao, Z. Chaperonins GroEL and GroES : Views From Atomic Force Microscopy. Biophys. J. 71, 2213–2221 (1996).
79. Roseman, A. M., Chen, S., White, H., Braig, K. & Saibil, H. R. The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 87, 241–251 (1996).
80. Ludtke, S. J., Jakana, J., Song, J. L., Chuang, D. T. & Chiu, W. A 11.5 A single particle reconstruction of GroEL using EMAN. J Mol Biol 314, 253–262 (2001).
81. Ludtke, S. J. et al. De Novo Backbone Trace of GroEL from Single Particle Electron Cryomicroscopy. Structure 16, 441–448 (2008).
82. Langer, T., Pfeifer, G., Martin, J., Baumeister, W. & Harti, F. end of the GroEL cylinder,. EMBO J. 1, 4757–4765 (1992).
83. Hÿtch, M. J. & Stobbs, W. M. Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 191–203 (1994).
84. Van Dyck, D., Lobato, I., Chen, F. R. & Kisielowski, C. Do you believe that atoms stay in place when you observe them in HREM? Micron 68, 158–163 (2015).
85. Taylor, K. A. & Glaeser, R. M. Electron Diffraction of Frozen, Hydrated Protein Crystals. Science (80-. ). 186, 1036–1037 (1974).
86. Adrian, M., Dubochet, J., Lepault, J. & McDowall, a W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).
87. Frank, J. Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31, 303–319 (2002).
88. Rez, P. Comparison of phase contrast transmission electron microscopy with optimized scanning transmission annular dark field imaging for protein imaging. Ultramicroscopy 96, 117–124 (2003).
89. Harris, J. R. & Markl, J. Keyhole limpet hemocyanin (KLH): A biomedical review. Micron 30, 597–623 (1999).
90. Gatsogiannis, C. & Markl, J. Keyhole Limpet Hemocyanin: 9-Å CryoEM Structure and Molecular Model of the KLH1 Didecamer Reveal the Interfaces and Intricate Topology of the 160 Functional Units. J. Mol. Biol. 385, 963–983 (2009).
91. Araujo, A. C. V, Abreu, F., Silva, K. T., Bazylinski, D. A. & Lins, U. Magnetotactic bacteria as potential sources of bioproducts. Marine Drugs 13, (2015).
92. Woehl, T. J. et al. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging. Sci. Rep. 4, 6854 (2014).