研究生: |
孫芳君 Sun Fang Chun |
---|---|
論文名稱: |
細胞遭遇內質網逆境刺激葡萄糖調節蛋白質七十八(GRP78)的胞內位置分佈及其訊號傳遞分析 Spatial distribution changes and signaling pathways involved in the induction of GRP78 in cells experiencing ER stress |
指導教授: |
黎耀基
Yiu Kay Lai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 內質網逆境 、葡萄糖調節蛋白質七十八 、胞器分離 、粒線體 、膠達那黴素 、訊號傳遞 |
外文關鍵詞: | ER stress, Glucose regulated protien 78, Organelle isolation, Mitochondria, Geldamycin, Signal transduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內質網是個具有多功能的胞器,控制許多細胞內重要程序,包括:鈣離子恆定環境平衡、蛋白質合成、蛋白質運輸及細胞凋亡。當細胞處於生理或病理嚴重狀況下,鈣離子恆定環境平衡遭到破壞,造成未摺疊或錯誤摺疊的蛋白質堆積在內質網內腔導致內質網逆境,而且細胞會活化一系列訊號傳導路徑,統稱未摺疊蛋白質反應 (UPR)。其中一個UPR的特徵是內質網逆境蛋白質(葡萄糖調節蛋白質)的誘導表現。目前了解最清楚的是葡萄糖調節蛋白質七十八 (GRP78),也是備為熟知的免疫球蛋白重鏈結合蛋白質又稱為BiP,具有調節鈣離子功能及執行其身為分子伴侶的任務,負責膜蛋白及分泌蛋白質的折疊。過去的報導指出GRP78會分佈於不同胞內位置,促使我們想要分析及比較當細胞遭遇內質網逆境,GRP78胞內分佈圖譜的改變,尤其是細胞在鈣離子平衡受到干擾狀況下造成的內質網逆境。
以離子誘導劑 (A23187) 或內質網鈣離子通道抑制劑 (TG) 處理細胞會導致內質網鈣離子濃度流失及細胞質濃度因而增加。利用共軛焦螢光顯微鏡及免疫螢光染色法,證明在正常細胞生長狀況下,GRP78 的免疫染色在細胞核附近的細胞質呈現顆粒分佈,也就是一般內質網的分佈圖譜。當細胞暴露於A23187或者TG藥物處理時,GRP78 免疫染色呈現較強的螢光訊號及遍佈於細胞質。另外,GRP78和粒線體染色明顯呈現位置重疊的蟲形絲線狀,暗示著GRP78與粒線體有共位情形,而這個現象可能是因為蛋白質目標導向之量的增加所導致。取得內質網逆境刺激的細胞粒線體之後,利用胞器分離及蛋白質酶分解實驗,得知有顯著量的GRP78會目標導向進入粒線體而且受粒線體膜的保護不受蛋白質酶的分解。利用穿透式電子顯微鏡觀察免疫金染色也再次證明GRP78於內質網及粒線體的超顯微分佈。當細胞處於內質網逆境狀況,GRP78大部分在粒線體內部且鑲飾於粒線體膜上。將粒線體進行細部結構分離,進一步發現GRP78主要座落在粒線體內外膜間腔、內膜及基質。利用放射線標示新合成蛋白質並接著進行胞器分離實驗,結果顯示當細胞遭遇內質網逆境,新合成的GRP78會目標導向進入粒線體。這些研究成果指出,在一些狀況下原本滯留於內質網的GRP78可以目標導向到粒線體,這可能是未摺疊蛋白質反應 (UPR) 在內質網及粒線體之間的訊號溝通。
我們也使用另一種內質網逆境刺激藥物,膠達那黴素 (geldamycin,GA) 來探討GRP78誘導表現所牽涉的訊號傳遞路徑。利用鈣離子監測,抑制劑篩選及活性氧檢測來觀察GA的細胞效應,結果顯示GA會開啟連續關聯的訊號路徑,連結丙型磷脂酵素 (phospholipase C, PLC),使得細胞內鈣離子濃度增加,蛋白激酶C (protein kinase C, PKC) 活化及過氧自由基 (reactive oxygen species, ROS) 產生來誘導GRP78的表現。而且,從細胞外湧進的鈣離子、胞內儲存鈣離子變動及粒線體鈣濃度儲存對於GA所造成的鈣離子流通變化及GRP78的誘導表現扮演重要的角色。GA誘導GRP78表現的訊號傳遞可能說明了內質網逆境反應在細胞存活或細胞凋亡選擇過程的調節作用。
The endoplasmic reticulum (ER) is a multifunctional organelle controlling important cellular processes, including Ca2+ homeostasis, protein synthesis, protein trafficking, and apoptosis. Under physiologically or pharmacologically adverse conditions that perturb the calcium homeostasis, accumulation of unfolded or malfolded proteins in the ER lumen occurs, referred to as ER stress, and the cells will activate a series of signal transduction cascades collectively termed the unfolded protein response (UPR). One characteristic of the UPR is the induction of the ER resident stress proteins referred to as the glucose-regulated proteins (GRPs). The best characterized GRP78, also known as the immunoglobulin heavy chain binding protein or BiP, is thought to function in Ca2+ sequestration or as a molecular chaperone in the folding and assembly of membrane or secreted proteins. Previous reports of GRP78 in different cellular compartments prompted us to examine and compare the changes of GRP78 in intracellular distribution patterns in response to ER stress, specifically under calcium disturbance.
Treatment with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase inhibitor thapsigargin (TG) results in a decrease of [Ca2+]er with a concurrent increase of [Ca2+]c. The immunostaining of GRP78 coupled with confocal microscopy demonstrated the granular and perinuclear expression as normal ER distribution in cells under normal growing conditions. When the cells were exposed to A23187 or TG, the greater proportion of GRP78 displayed a diffused distribution throughout the cytoplasm at a slightly higher intensity. Overlapping of GRP78 and mitochondria marker apparently depicted worm-shaped strings, suggesting that there is an increase in the level of colocalization and that this might occur from an increase in the level of targeting. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies further indicated that the mitochondrial resided GRP78 is mainly located in the intermembrane space, inner membrane, and matrix. Furthermore, radioactive labeling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. The results in this study indicate that, at least under certain circumstances, the ER resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signaling between these two organelles.
We also investigate the signaling pathway involved in the induction of GRP78 in cells under the treatment of geldanamycin (GA), which is a potent inducer of ER stress response. By using calcium monitoring, inhibitors screening and direct examination of the ROS contents rendered by GA, we show that GA exerts GRP78 inductive expression through a causative pathways connecting phospholipase C to intracellular calcium increase, PKC activation as well as ROS generation. Furthermore, the calcium influx from extracellular space, intracellular calcium store oscillations and mitochondrial calcium influx are important for the calcium mobilization and GRP78 expression induced by GA. The GA-induced GRP78 expression signaling cascades may represent regulation of the ER-stress response in cell survival or apoptotic program.
References
1 Morimoto, R. I. (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788-96
2 Kleizen, B. and Braakman, I. (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16, 343-9
3 Sitia, R. and Braakman, I. (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426, 891-4
4 Welihinda, A. A., Tirasophon, W. and Kaufman, R. J. (1999) The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr 7, 293-300
5 Brochet, D. X., Yang, D., Di Maio, A., Lederer, W. J., Franzini-Armstrong, C. and Cheng, H. (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102, 3099-3104
6 Flores-Diaz, M., Higuita, J. C., Florin, I., Okada, T., Pollesello, P., Bergman, T., Thelestam, M., Mori, K. and Alape-Giron, A. (2004) A cellular UDP-glucose deficiency causes overexpression of glucose/oxygen-regulated proteins independent of the endoplasmic reticulum stress elements. J Biol Chem 279, 21724-21731
7 He, J., Kang, H., Yan, F. and Chen, C. (2004) The endoplasmic reticulum-related events in S-nitrosoglutathione-induced neurotoxicity in cerebellar granule cells. Brain Res 1015, 25-33
8 Boyce, M. and Yuan, J. (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13, 363-373
9 Wu, J. and Kaufman, R. J. (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13, 374-384
10 Zhang, K. and Kaufman, R. J. (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66, S102-109
11 Schroder, M. and Kaufman, R. J. (2005) ER stress and the unfolded protein response. Mutat Res 569, 29-63
12 Pahl, H. L. and Baeuerle, P. A. (1997) The ER-overload response: activation of NF-kappa B. Trends Biochem Sci 22, 63-67
13 Sidrauski, C. and Walter, P. (1997) The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031-1039
14 Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H. and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5, 897-904
15 Haze, K., Yoshida, H., Yanagi, H., Yura, T. and Mori, K. (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787-3799
16 Harding, H. P., Zhang, Y. and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271-274
17 Yan, W., Frank, C. L., Korth, M. J., Sopher, B. L., Novoa, I., Ron, D. and Katze, M. G. (2002) Control of PERK eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58IPK. Proc Natl Acad Sci U S A 99, 15920-15925
18 Chen, X., Shen, J. and Prywes, R. (2002) The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277, 13045-13052
19 Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M. and Mori, K. (2000) ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20, 6755-6767
20 Novoa, I., Zeng, H., Harding, H. P. and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153, 1011-1022
21 Ma, Y. and Hendershot, L. M. (2003) Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J Biol Chem 278, 34864-34873
22 Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K. and Kaufman, R. J. (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16, 452-66
23 Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K. and Mori, K. (2003) A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4, 265-71
24 Shiu, R. P., Pouyssegur, J., and Pastan, I. (1977) Glucose depletion accounts for the induction of two transformation-sensitive membrane proteins in Rous sarcoma virus-transformed chick embro fibroblasts. Proc Natl Acad Sci 74, 3840-3844
25 Mengesdorf, T., Althausen, S., Oberndorfer, I. and Paschen, W. (2001) Response of neurons to an irreversible inhibition of endoplasmic reticulum Ca2+-ATPase: relationship between global protein synthesis and expression and translation of individual genes. Biochem J 356, 805-812
26 Little, E., Ramakrishnan, M., Roy, B., Gazit, G. and Lee, A. S. (1994) The glucose-regulated proteins (GRP78 and GRP94): functions, gene regulation, and applications. Crit Rev Eukaryot Gene Expr 4, 1-18
27 Gilmore, W. J. and Kirby, G. M. (2004) Endoplasmic reticulum stress due to altered cellular redox status positively regulates murine hepatic CYP2A5 expression. J Pharmacol Exp Ther 308, 600-608
28 Liu, H., Bowes, R. C., 3rd, van de Water, B., Sillence, C., Nagelkerke, J. F. and Stevens, J. L. (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272, 21751-21759
29 Lee, A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381
30 Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E. and Hendrickson, W. A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606-1614
31 Flaherty, K. M., Wilbanks, S. M., DeLuca-Flaherty, C. and McKay, D. B. (1994) Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. J Biol Chem 269, 12899-12907
32 Mayer, M., Reinstein, J. and Buchner, J. (2003) Modulation of the ATPase cycle of BiP by peptides and proteins. J Mol Biol 330, 137-144
33 Shen, J., Chen, X., Hendershot, L. and Prywes, R. (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3, 99-111
34 Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. and Ron, D. (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332
35 Shen, J. and Prywes, R. (2005) ER stress signaling by regulated proteolysis of ATF6. Methods 35, 382-389
36 Liu, C. Y., Wong, H. N., Schauerte, J. A. and Kaufman, R. J. (2002) The protein kinase/endoribonuclease IRE1alpha that signals the unfolded protein response has a luminal N-terminal ligand-independent dimerization domain. J Biol Chem 277, 18346-18356
37 Wek, R. C., Jiang, H. Y. and Anthony, T. G. (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34, 7-11
38 Misra, U. K., Sharma, T. and Pizzo, S. V. (2005) Ligation of cell surface-associated glucose-regulated protein 78 by receptor-recognized forms of alpha 2-macroglobulin: activation of p21-activated protein kinase-2-dependent signaling in murine peritoneal macrophages. J Immunol 175, 2525-2533
39 Jindadamrongwech, S., Thepparit, C. and Smith, D. R. (2004) Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149, 915-927
40 Delpino, A. and Castelli, M. (2002) The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation. Biosci Rep 22, 407-420
41 Rao, R. V., Peel, A., Logvinova, A., del Rio, G., Hermel, E., Yokota, T., Goldsmith, P. C., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2002) Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett 514, 122-128
42 Reddy, R. K., Mao, C., Baumeister, P., Austin, R. C., Kaufman, R. J. and Lee, A. S. (2003) Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J Biol Chem 278, 20915-20924
43 Rao, R. V., Ellerby, H. M. and Bredesen, D. E. (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11, 372-380
44 Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. (2002) An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem 277, 34287-34294
45 Nakagawa, T. and Yuan, J. (2000) Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 150, 887-894
46 Rao, R. V., Hermel, E., Castro-Obregon, S., del Rio, G., Ellerby, L. M., Ellerby, H. M. and Bredesen, D. E. (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276, 33869-33874
47 Vandenabeele, P., Orrenius, S. and Zhivotovsky, B. (2005) Serine proteases and calpains fulfill important supporting roles in the apoptotic tragedy of the cellular opera. Cell Death Differ 12, 1219-1224
48 Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276, 13935-13940
49 Machino, T., Hashimoto, S., Maruoka, S., Gon, Y., Hayashi, S., Mizumura, K., Nishitoh, H., Ichijo, H. and Horie, T. (2003) Apoptosis signal-regulating kinase 1-mediated signaling pathway regulates hydrogen peroxide-induced apoptosis in human pulmonary vascular endothelial cells. Crit Care Med 31, 2776-2781
50 Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P. and Ron, D. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666
51 Lei, K. and Davis, R. J. (2003) JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A 100, 2432-2437
52 Di Sano, F., Ferraro, E., Tufi, R., Achsel, T., Piacentini, M. and Cecconi, F. (2006) Endoplasmic reticulum stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism. J Biol Chem 281, 2693-2700
53 Averous, J., Bruhat, A., Jousse, C., Carraro, V., Thiel, G. and Fafournoux, P. (2004) Induction of CHOP expression by amino acid limitation requires both ATF4 expression and ATF2 phosphorylation. J Biol Chem 279, 5288-5297
54 Nakanishi, K., Sudo, T. and Morishima, N. (2005) Endoplasmic reticulum stress signaling transmitted by ATF6 mediates apoptosis during muscle development. J Cell Biol 169, 555-560
55 Kim, R., Emi, M., Tanabe, K. and Murakami, S. (2006) Role of the unfolded protein response in cell death. Apoptosis 11, 5-13
56 McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. and Holbrook, N. J. (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21, 1249-1259
57 Germain, M. and Shore, G. C. (2003) Cellular distribution of Bcl-2 family proteins. Sci STKE 2003, pe10
58 Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J. and Thompson, C. B. (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162, 59-69
59 Scorrano, L., Oakes, S. A., Opferman, J. T., Cheng, E. H., Sorcinelli, M. D., Pozzan, T. and Korsmeyer, S. J. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135-139
60 Ito, Y., Pandey, P., Mishra, N., Kumar, S., Narula, N., Kharbanda, S., Saxena, S. and Kufe, D. (2001) Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol 21, 6233-6242
61 Reimertz, C., Kogel, D., Rami, A., Chittenden, T. and Prehn, J. H. (2003) Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol. 162, 587-97
62 Breckenridge, D. G., Stojanovic, M., Marcellus, R. C. and Shore, G. C. (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol. 160, 1115-27
63 Brostrom, M. A. and Brostrom, C. O. (2003) Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34, 345-363
64 Meldolesi, J. and Pozzan, T. (1998) The heterogeneity of ER Ca2+ stores has a key role in nonmuscle cell signaling and function. J Cell Biol 142, 1395-1398
65 Berridge, M. J. (2002) The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235-249
66 Kaufman, R. J., Scheuner, D., Schroder, M., Shen, X., Lee, K., Liu, C. Y. and Arnold, S. M. (2002) The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 3, 411-421
67 Ma, Y. and Hendershot, L. M. (2001) The unfolding tale of the unfolded protein response. Cell 107, 827-830
68 Brostrom, C. O. and Brostrom, M. A. (1998) Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58, 79-125
69 Hiller, M. M., Finger, A., Schweiger, M. and Wolf, D. H. (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273, 1725-1728
70 Okada, T., Yoshida, H., Akazawa, R., Negishi, M. and Mori, K. (2002) Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366, 585-594
71 Katayama, T., Imaizumi, K., Manabe, T., Hitomi, J., Kudo, T. and Tohyama, M. (2004) Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat 28, 67-78
72 Mattson, M. P., LaFerla, F. M., Chan, S. L., Leissring, M. A., Shepel, P. N. and Geiger, J. D. (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23, 222-229
73 Lievremont, J. P., Rizzuto, R., Hendershot, L. and Meldolesi, J. (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J Biol Chem 272, 30873-30879
74 Nigam, S. K., Goldberg, A. L., Ho, S., Rohde, M. F., Bush, K. T. and Sherman, M. (1994) A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca2+-binding proteins and members of the thioredoxin superfamily. J Biol Chem 269, 1744-1749
75 Yu, Z., Luo, H., Fu, W. and Mattson, M. P. (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155, 302-314
76 Breckenridge, D. G., Germain, M., Mathai, J. P., Nguyen, M. and Shore, G. C. (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22, 8608-8618
77 Strasser, A., O'Connor, L. and Dixit, V. M. (2000) Apoptosis signaling. Annu Rev Biochem 69, 217-245
78 Boehning, D., Patterson, R. L., Sedaghat, L., Glebova, N. O., Kurosaki, T. and Snyder, S. H. (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5, 1051-1061
79 Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G. and Ron, D. (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92-96
80 Kitamura, Y., Miyamura, A., Takata, K., Inden, M., Tsuchiya, D., Nakamura, K. and Taniguchi, T. (2003) Possible involvement of both endoplasmic reticulum-and mitochondria-dependent pathways in thapsigargin-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Pharmacol Sci 92, 228-236
81 Munro, S. and Pelham, H. R. (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899-907
82 Altmeyer, A., Maki, R. G., Feldweg, A. M., Heike, M., Protopopov, V. P., Masur, S. K. and Srivastava, P. K. (1996) Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 69, 340-349
83 Takemoto, H., Yoshimori, T., Yamamoto, A., Miyata, Y., Yahara, I., Inoue, K. and Tashiro, Y. (1992) Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide-isomerase. Arch Biochem Biophys 296, 129-136
84 Ying, M., Sannerud, R., Flatmark, T. and Saraste, J. (2002) Colocalization of Ca2+-ATPase and GRP94 with p58 and the effects of thapsigargin on protein recycling suggest the participation of the pre-Golgi intermediate compartment in intracellular Ca2+ storage. Eur J Cell Biol 81, 469-483
85 Liao, J., Price, D. and Omary, M. B. (1997) Association of glucose-regulated protein (grp78) with human keratin 8. FEBS Lett 417, 316-320
86 Misra, U. K., Deedwania, R. and Pizzo, S. V. (2005) Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280, 26278-26286
87 Turano, C., Coppari, S., Altieri, F. and Ferraro, A. (2002) Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol 193, 154-163
88 Rigobello, M. P., Donella-Deana, A., Cesaro, L. and Bindoli, A. (2000) Isolation, purification, and characterization of a rat liver mitochondrial protein disulfide isomerase. Free Radic Biol Med 28, 266-272
89 Coppolino, M. G. and Dedhar, S. (1998) Calreticulin. Int J Biochem Cell Biol 30, 553-558
90 Michalak, M., Corbett, E. F., Mesaeli, N., Nakamura, K. and Opas, M. (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344 Pt 2, 281-292
91 Chen, L. Y., Chiang, A. S., Hung, J. J., Hung, H. I. and Lai, Y. K. (2000) Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells. J Cell Biochem 78, 404-416
92 Drummond, I. A., Lee, A. S., Resendez, E., Jr. and Steinhardt, R. A. (1987) Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J Biol Chem 262, 12801-12805
93 Treiman, M., Caspersen, C. and Christensen, S. B. (1998) A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca(2+)-ATPases. Trends Pharmacol Sci 19, 131-135
94 Sweetlove, L. J., Mowday, B., Hebestreit, H. F., Leaver, C. J. and Millar, A. H. (2001) Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett 508, 272-276
95 Pelham, H. R. (1990) The retention signal for soluble proteins of the endoplasmic reticulum. Trends Biochem Sci 15, 483-486
96 Arap, M. A., Lahdenranta, J., Mintz, P. J., Hajitou, A., Sarkis, A. S., Arap, W. and Pasqualini, R. (2004) Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. Cancer Cell 6, 275-284
97 Xiao, G., Chung, T. F., Pyun, H. Y., Fine, R. E. and Johnson, R. J. (1999) KDEL proteins are found on the surface of NG108-15 cells. Brain Res Mol Brain Res 72, 121-128
98 Wiest, D. L., Bhandoola, A., Punt, J., Kreibich, G., McKean, D. and Singer, A. (1997) Incomplete endoplasmic reticulum (ER) retention in immature thymocytes as revealed by surface expression of "ER-resident" molecular chaperones. Proc Natl Acad Sci U S A 94, 1884-1889
99 Levine, C. G., Mitra, D., Sharma, A., Smith, C. L. and Hegde, R. S. (2005) The efficiency of protein compartmentalization into the secretory pathway. Mol Biol Cell 16, 279-291
100 Shaffer, K. L., Sharma, A., Snapp, E. L. and Hegde, R. S. (2005) Regulation of protein compartmentalization expands the diversity of protein function. Dev Cell 9, 545-554
101 Wang, N. S., Unkila, M. T., Reineks, E. Z. and Distelhorst, C. W. (2001) Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem 276, 44117-44128
102 Ferri, K. F. and Kroemer, G. (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255-263
103 Marchenko, N. D., Zaika, A. and Moll, U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275, 16202-16212
104 Gotoh, T., Terada, K., Oyadomari, S. and Mori, M. (2004) hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibiting translocation of Bax to mitochondria. Cell Death Differ 11, 390-402
105 Wang, H. G. and Reed, J. C. (1998) Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors 8, 13-16
106 Zhong, J., Troppmair, J. and Rapp, U. R. (2001) Independent control of cell survival by Raf-1 and Bcl-2 at the mitochondria. Oncogene 20, 4807-4816
107 Pearl, L. H. and Prodromou, C. (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10, 46-51
108 Scheibel, T. and Buchner, J. (1998) The Hsp90 complex--a super-chaperone machine as a novel drug target. Biochem Pharmacol 56, 675-682
109 Bagatell, R., Paine-Murrieta, G. D., Taylor, C. W., Pulcini, E. J., Akinaga, S., Benjamin, I. J. and Whitesell, L. (2000) Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 6, 3312-3318
110 Lawson, B., Brewer, J. W. and Hendershot, L. M. (1998) Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174, 170-178
111 Hampton, R. Y. (2000) ER stress response: getting the UPR hand on misfolded proteins. Curr Biol 10, R518-521
112 Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S. and Walter, P. (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258
113 Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13, 1211-1233
114 Li, Z., Liu, Y., Shen, W., Chen, Z. and Gui, Y. (1997) Changes in intracellular and extracellular calcium concentration of the myocardial cells during heart failure in children. Chin Med J (Engl) 110, 598-601
115 Miyake, H., Hara, I., Arakawa, S. and Kamidono, S. (2000) Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J Cell Biochem 77, 396-408
116 Yu, Z., Luo, H., Fu, W. and Mattson, M. P. (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155, 302-14
117 Katayama, T., Imaizumi, K., Manabe, T., Hitomi, J., Kudo, T. and Tohyama, M. (2004) Induction of neuronal death by ER stress in Alzheimer's disease. J Chem Neuroanat 28, 67-78
118 Mattson, M. P., LaFerla, F. M., Chan, S. L., Leissring, M. A., Shepel, P. N. and Geiger, J. D. (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23, 222-9
119 Lai, M. T., Huang, K. L., Chang, W. M. and Lai, Y. K. (2003) Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 15, 585-595
120 Shu, C. W., Cheng, N. L., Chang, W. M., Tseng, T. L. and Lai, Y. K. (2005) Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 94, 1199-1209
121 Weizsaecker, M., Deen, D. F., Rosenblum, M. L., Hoshino, T., Gutin, P. H. and Barker, M. (1981) The 9L rat brain tumor: description and application of an animal model. J Neurol 224, 183-192
122 Grynkiewicz, G., Poenie, M. and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440-3450
123 Reynaud, S., Duchiron, C. and Deschaux, P. (2001) 3-Methylcholanthrene increases phorbol 12-myristate 13-acetate-induced respiratory burst activity and intracellular calcium levels in common carp (Cyprinus carpio L) macrophages. Toxicol Appl Pharmacol 175, 1-9
124 Kassenbrock, C. K. and Kelly, R. B. (1989) Interaction of heavy chain binding protein (BiP/GRP78) with adenine nucleotides. Embo J 8, 1461-1467
125 Chen, L. Y., Chiang, A. S., Hung, J. J., Hung, H. I. and Lai, Y. K. (2000) Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells. J Cell Biochem 78, 404-16
126 Paschen, W. (1996) Disturbances of calcium homeostasis within the endoplasmic reticulum may contribute to the development of ischemic-cell damage. Med Hypotheses 47, 283-288
127 Chang, W. M., Chen, K. D., Chen, L. Y., Lai, M. T. and Lai, Y. K. (2003) Mitochondrial calcium-mediated reactive oxygen species are essential for the rapid induction of the grp78 gene in 9L rat brain tumour cells. Cell Signal 15, 57-64
128 Dupont, G. and Goldbeter, A. (1998) CaM kinase II as frequency decoder of Ca2+ oscillations. Bioessays 20, 607-610
129 Oancea, E. and Meyer, T. (1998) Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307-318
130 Hattori, T., Ara, T. and Wang, P. (2005) Participation of tyrosine kinase and phospholipase Cgamma in isradipine-induced proliferation of cultured human gingival fibroblasts. Eur J Med Res 10, 543-546
131 Alagarsamy, S., Saugstad, J., Warren, L., Mansuy, I. M., Gereau, R. W. t. and Conn, P. J. (2005) NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 49 Suppl 1, 135-145
132 Parri, H. R., Gould, T. M. and Crunelli, V. (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci. 4, 803-12
133 Ikari, A., Sakai, H. and Takeguchi, N. (1997) ATP, thapsigargin and cAMP increase Ca2+ in rat hepatocytes by activating three different Ca2+ influx pathways. Jpn J Physiol 47, 235-239
134 Morgan, J., Whitaker, J. E. and Oseroff, A. R. (1998) GRP78 induction by calcium ionophore potentiates photodynamic therapy using the mitochondrial targeting dye victoria blue BO. Photochem Photobiol 67, 155-164
135 Sun, F. C., Wei, S., Li, C. W., Chang, Y. S., Chao, C. C. and Lai, Y. K. (2006) Localization of GRP78 to mitochondria in response to unfolded protein response. Biochem J 396, 31-39
136 Berridge, M. J., Bootman, M. D. and Lipp, P. (1998) Calcium--a life and death signal. Nature 395, 645-648
137 Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1, 11-21
138 Takemura, H., Hughes, A. R., Thastrup, O. and Putney, J. W., Jr. (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 264, 12266-12271
139 Wei, H., Wei, W., Bredesen, D. E. and Perry, D. C. (1998) Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigargin-induced depletion of intracellular calcium stores. J Neurochem 70, 2305-2314
140 Rodland, K. D., Wersto, R. P., Hobson, S. and Kohn, E. C. (1997) Thapsigargin-induced gene expression in nonexcitable cells is dependent on calcium influx. Mol Endocrinol 11, 281-291
141 Patel, S., Joseph, S. K. and Thomas, A. P. (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25, 247-264
142 Kiselyov, K., Mignery, G. A., Zhu, M. X. and Muallem, S. (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4, 423-429
143 van Rossum, D. B., Patterson, R. L., Kiselyov, K., Boehning, D., Barrow, R. K., Gill, D. L. and Snyder, S. H. (2004) Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. Proc Natl Acad Sci U S A 101, 2323-2327
144 Duchen, M. R. (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529 Pt 1, 57-68
145 Putney, J. W., Jr. (2001) Pharmacology of capacitative calcium entry. Mol Interv 1, 84-94
146 Putney, J. W., Jr. (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34, 339-344
147 Chen, K. D., Lai, M. T., Cho, J. H., Chen, L. Y. and Lai, Y. K. (2000) Activation of p38 mitogen-activated protein kinase and mitochondrial Ca(2+)-mediated oxidative stress are essential for the enhanced expression of grp78 induced by the protein phosphatase inhibitors okadaic acid and calyculin A. J Cell Biochem 76, 585-595
148 Chen, K. D., Hung, J. J., Huang, H. L., Chang, M. D. and Lai, Y. K. (1997) Rapid induction of the Grp78 gene by cooperative actions of okadaic acid and heat-shock in 9L rat brain tumor cells--involvement of a cAMP responsive element-like promoter sequence and a protein kinase A signaling pathway. Eur J Biochem 248, 120-129
149 Blobe, G. C., Stribling, D. S., Fabbro, D., Stabel, S. and Hannun, Y. A. (1996) Protein kinase C beta II specifically binds to and is activated by F-actin. J Biol Chem 271, 15823-15830
150 Goodnight, J. A., Mischak, H., Kolch, W. and Mushinski, J. F. (1995) Immunocytochemical localization of eight protein kinase C isozymes overexpressed in NIH 3T3 fibroblasts. Isoform-specific association with microfilaments, Golgi, endoplasmic reticulum, and nuclear and cell membranes. J Biol Chem 270, 9991-10001
151 Cao, X., Zhou, Y. and Lee, A. S. (1995) Requirement of tyrosine- and serine/threonine kinases in the transcriptional activation of the mammalian grp78/BiP promoter by thapsigargin. J Biol Chem 270, 494-502
152 Hong, M., Lin, M. Y., Huang, J. M., Baumeister, P., Hakre, S., Roy, A. L. and Lee, A. S. (2005) Transcriptional regulation of the Grp78 promoter by endoplasmic reticulum stress: role of TFII-I and its tyrosine phosphorylation. J Biol Chem 280, 16821-16828
153 Kehrer, J. P. and Lund, L. G. (1994) Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 17, 65-75
154 Schulze-Osthoff, K., Bauer, M. K., Vogt, M. and Wesselborg, S. (1997) Oxidative stress and signal transduction. Int J Vitam Nutr Res 67, 336-342
155 Dikalov, S., Landmesser, U. and Harrison, D. G. (2002) Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic redox cycling. Implications for studies of Hsp90 and endothelial cell nitric-oxide synthase. J Biol Chem 277, 25480-25485
156 Billecke, S. S., Bender, A. T., Kanelakis, K. C., Murphy, P. J., Lowe, E. R., Kamada, Y., Pratt, W. B. and Osawa, Y. (2002) hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90. J Biol Chem 277, 20504-20509
157 Xiao, N., Callaway, C. W., Lipinski, C. A., Hicks, S. D. and DeFranco, D. B. (1999) Geldanamycin provides posttreatment protection against glutamate-induced oxidative toxicity in a mouse hippocampal cell line. J Neurochem 72, 95-101
158 Lu, A., Ran, R., Parmentier-Batteur, S., Nee, A. and Sharp, F. R. (2002) Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81, 355-364
159 Walter, P. and Johnson, A. E. (1994) Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol 10, 87-119
160 Jungnickel, B. and Rapoport, T. A. (1995) A posttargeting signal sequence recognition event in the endoplasmic reticulum membrane. Cell 82, 261-270
161 Rutkowski, D. T., Lingappa, V. R. and Hegde, R. S. (2001) Substrate-specific regulation of the ribosome- translocon junction by N-terminal signal sequences. Proc Natl Acad Sci U S A 98, 7823-7828
162 Rutkowski, D. T., Ott, C. M., Polansky, J. R. and Lingappa, V. R. (2003) Signal sequences initiate the pathway of maturation in the endoplasmic reticulum lumen. J Biol Chem 278, 30365-30372
163 Kim, S. J. and Hegde, R. S. (2002) Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol Biol Cell 13, 3775-3786
164 Voigt, S., Jungnickel, B., Hartmann, E. and Rapoport, T. A. (1996) Signal sequence-dependent function of the TRAM protein during early phases of protein transport across the endoplasmic reticulum membrane. J Cell Biol 134, 25-35
165 Hegde, R. S., Voigt, S., Rapoport, T. A. and Lingappa, V. R. (1998) TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92, 621-631
166 Fons, R. D., Bogert, B. A. and Hegde, R. S. (2003) Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J Cell Biol 160, 529-539
167 Ng, D. T., Brown, J. D. and Walter, P. (1996) Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134, 269-278
168 Wittke, S., Dunnwald, M., Albertsen, M. and Johnsson, N. (2002) Recognition of a subset of signal sequences by Ssh1p, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae. Mol Biol Cell 13, 2223-2232
169 Leung-Hagesteijn, C. Y., Milankov, K., Michalak, M., Wilkins, J. and Dedhar, S. (1994) Cell attachment to extracellular matrix substrates is inhibited upon downregulation of expression of calreticulin, an intracellular integrin alpha-subunit-binding protein. J Cell Sci 107 (Pt 3), 589-600
170 Coppolino, M., Leung-Hagesteijn, C., Dedhar, S. and Wilkins, J. (1995) Inducible interaction of integrin alpha 2 beta 1 with calreticulin. Dependence on the activation state of the integrin. J Biol Chem 270, 23132-23138
171 Coppolino, M. G., Woodside, M. J., Demaurex, N., Grinstein, S., St-Arnaud, R. and Dedhar, S. (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843-847
172 Holaska, J. M., Black, B. E., Rastinejad, F. and Paschal, B. M. (2002) Ca2+-dependent nuclear export mediated by calreticulin. Mol Cell Biol 22, 6286-6297
173 Dedhar, S., Rennie, P. S., Shago, M., Hagesteijn, C. Y., Yang, H., Filmus, J., Hawley, R. G., Bruchovsky, N., Cheng, H., Matusik, R. J. and et al. (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367, 480-483
174 Burns, K., Duggan, B., Atkinson, E. A., Famulski, K. S., Nemer, M., Bleackley, R. C. and Michalak, M. (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor. Nature 367, 476-480
175 Iakova, P., Wang, G. L., Timchenko, L., Michalak, M., Pereira-Smith, O. M., Smith, J. R. and Timchenko, N. A. (2004) Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. Embo J 23, 406-417
176 Chen, D., Texada, D. E., Duggan, C., Liang, C., Reden, T. B., Kooragayala, L. M. and Langford, M. P. (2005) Surface calreticulin mediates muramyl dipeptide-induced apoptosis in RK13 cells. J Biol Chem 280, 22425-22436
177 Lamb, H. K., Mee, C., Xu, W., Liu, L., Blond, S., Cooper, A., Charles, I. G. and Hawkins, A. R. (2006) The Affinity of a Major Ca2+ Binding Site on GRP78 Is Differentially Enhanced by ADP and ATP. J Biol Chem 281, 8796-8805
178 Kuwabara, H., Yoneda, M., Hayasaki, H., Nakamura, T. and Mori, H. (2006) Glucose regulated proteins 78 and 75 bind to the receptor for hyaluronan mediated motility in interphase microtubules. Biochem Biophys Res Commun 339, 971-976
179 Triantafilou, K., Fradelizi, D., Wilson, K. and Triantafilou, M. (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76, 633-643
180 Liu, G., Shang, Y. and Yu, Y. (2006) Induced endoplasmic reticulum (ER) stress and binding of over-expressed ER specific chaperone GRP78/BiP with dimerized epidermal growth factor receptor in mammalian cells exposed to low concentration of N-methyl-N'-nitro-N-nitrosoguanidine. Mutat Res 596, 12-21
181 Kim, H. R., Kang, H. S. and Kim, H. D. (1999) Geldanamycin induces heat shock protein expression through activation of HSF1 in K562 erythroleukemic cells. IUBMB Life 48, 429-33
182 Shu, C. W., Cheng, N. L., Chang, W. M., Tseng, T. L. and Lai, Y. K. (2005) Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 94, 1199-209
183 Chang, Y. S., Lee, L. C., Sun, F. C., Chao, C. C., Fu, H. W. and Lai, Y. K. (2006) Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 97, 156-65
184 Lai, M. T., Huang, K. L., Chang, W. M. and Lai, Y. K. (2003) Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 15, 585-95
185 Paschen, W. (1999) Calcium neurotoxicity. J Neurochem 72, 2625-6
186 Wertz, I. E. and Dixit, V. M. (2000) Characterization of calcium release-activated apoptosis of LNCaP prostate cancer cells. J Biol Chem 275, 11470-7
187 Pinton, P., Ferrari, D., Rapizzi, E., Di Virgilio, F., Pozzan, T. and Rizzuto, R. (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. Embo J 20, 2690-701
188 Jiang, S., Chow, S. C., Nicotera, P. and Orrenius, S. (1994) Intracellular Ca2+ signals activate apoptosis in thymocytes: studies using the Ca2+-ATPase inhibitor thapsigargin. Exp Cell Res 212, 84-92
189 Rizzuto, R., Brini, M., Murgia, M. and Pozzan, T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262, 744-7
190 Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., Tuft, R. A. and Pozzan, T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763-6
191 Csordas, G., Thomas, A. P. and Hajnoczky, G. (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. Embo J 18, 96-108