研究生: |
黃政婕 Huang, Cheng-Chieh |
---|---|
論文名稱: |
重組桿狀病毒轉導誘導性多功能幹細胞並應用於誘導分化成造血幹細胞 Recombinant Baculovirus Transduced iPSCs and Its Applications in Differentiation to HSCs |
指導教授: |
胡育誠
Hu, Yu-Chen |
口試委員: |
黃效民
趙裕展 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 桿狀病毒 、誘導性多功能幹細胞 、造血幹細胞 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
桿狀病毒是目前新興的基因治療載體,而誘導性多功能幹細胞近年來也被視為在再生醫學上的應用有極大的潛力,目前已有利用腺病毒以及添加生長因子或是其他方式,以胚胎幹細胞所建立的分化方式成功的使誘導幹細胞分化成許多種類的細胞,包括神經細胞、造血幹細胞等。目前尚未有文獻指出可以利用桿狀病毒攜帶外源基因轉導誘導性多功能幹細胞,而由於已有文獻證實桿狀病毒可以成功的轉導胚胎幹細胞,又由於胚胎幹細胞與誘導性多功能幹細胞在基因表現、表面標記蛋白、分化功能上諸多的相似性,於是本實驗室認為建立一個轉導誘導性多功能幹細胞的系統是可行的,並且期望利用桿狀病毒攜帶外源基因的方式應用於誘導性多功能幹細胞的分化。本研究可分為兩個主軸,第一部分建立桿狀病毒轉導誘導性多功能幹細胞之系統,在轉導策略的部分我們首先探討桿狀病毒攜帶不同啟動子對於外源基因表現的差異,研究結果發現在CAG、CMV、EF1-α三者啟動子中,CAG啟動子在添加丁酸鈉(sodium butyrate)後驅動外源基因的表現明顯高於其餘兩啟動子;後續進行最適化所添加的丁酸鈉濃度,比較添加不同濃度的丁酸鈉對於增加外源基因表現及後續形成類胚囊體的影響,發現在添加較高丁酸鈉濃度時發現會有影響類胚囊體形成效率的影響,於是在外源基因表效率及類胚胎體效率中取平衡點。進一步我們也研究利用轉導iPS細胞適當的時機點,以延長短效桿狀病毒所攜帶的外源基因之表現。第二部分我們設計五株病毒,同時表現生長因子BMP4、VEGF和SCF及轉錄因子AML1B和SCL,誘導iPS細胞分化成造血幹細胞。利用ELISA和RT-PCR分析外源基因表現量,並利用流式細胞儀分化效率。目前尚未有文獻指出利用桿狀病毒載體誘導iPS 細胞分化成造血幹細胞,故本研究具有其價值性。
Baculovirus is a promising vector for gene therapy while induced pluripotent stem (iPS) cells hold great potential in regenerative medicine. It is reported that baculovirus can successfully transduce embryonic stem cells, yet whether baculovirus can transduce iPS cell remains unknown. Due to the similarity of gene expression, surface markers and differentiation functionality between embryonic stem cells and iPS cells, creating a system to transduce iPS cells is feasible. This study aims to employ baculovirus to deliver appropriate transgenes into iPS cells in order to induce iPS cells differentiation into hematopoietic progenitors. We first constructed the recombinant baculoviruses carrying the transgenes and then evaluated the gene expression mediated by different promoters and the dosage effect of sodium butyrate. We found that in iPS cells CAG promoter drove the gene expression better than the CMV and EF1-α promoter, and discovered that high dosage of sodium butyrate affected embryonic body forming. Second, we constructed five different viruses carrying different genes encoding various growth factors and transcription factors. After virus transduction of iPS cells, we analyzed the transgene expression and the efficiency of hematopoiesis differentiation by ELISA, RT-PCR and flow cytometry. This study can open a new avenue to direct the iPS differentiation toward the hematopoietic lineage.
Adamo L, Naveiras O, Wenzel PL, McKinney-Freeman S, Mack PJ, Gracia-Sancho J, Suchy-Dicey A, Yoshimoto M, Lensch MW, Yoder MC and others. 2009. Biomechanical forces promote embryonic haematopoiesis. Nature 459(7250):1131-5.
Amabile G, Meissner A. 2009. Induced pluripotent stem cells: current progress and potential for regenerative medicine. Trends Mol Med 15(2):59-68.
Burt RK, Verda L, Kim DA, Oyama Y, Luo KH, Link C. 2004. Embryonic stem cells as an alternate marrow donor source: Engraftment without graft-versus-host disease. Journal of Experimental Medicine 199(7):895-904.
Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C and others. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435-9.
Cheshenko N, Krougliak N, Eisensmith RC, Krougliak VA. 2001. A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus. Gene Ther 8(11):846-54.
Dang SM, Kyba M, Perlingeiro R, Daley GQ, Zandstra PW. 2002. Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering 78(4):442-53.
Fujita Y, Nishimura M, Taniwaki M, Abe T, Okuda T. 2001. Identification of an alternatively spliced form of the mouse AML1/RUNX1 gene transcript AML1c and its expression in early hematopoietic development. Biochem Biophys Res Commun 281(5):1248-55.
Ho Y-C, Chung Y-C, Hwang S-M, Wang K-C, Hu Y-C. 2005. Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J. Gene. Med. 7:860-868.
Ho Y-C, Lee H-P, Hwang S-M, Lo W-H, Chen H-C, Chung C-K, Hu Y-C. 2006. Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther. 13:1471-1479.
Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M. 1995. Efficient gene-transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. U.S.A. 92(22):10099-10103.
Hu Y-C. 2005. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol. Sin. 26:405-416.
Hu Y-C. 2006. Baculovirus vectors for gene therapy. Adv. Virus. Res. 68:287-320.
Hu Y-C. 2008. Baculoviral vectors for gene delivery: A review. Curr. Gene Ther. 8:54-65.
Inamura M, Kawabata K, Takayama K, Tashiro K, Sakurai F, Katayama K, Toyoda M, Akutsu H, Miyagawa Y, Okita H and others. 2011. Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther 19(2):400-7.
Kassouf MT, Chagraoui H, Vyas P, Porcher C. 2008. Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis. Blood 112(4):1056-67.
Keller G. 2005. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129-55.
Kost TA, Condreay JP, Jarvis DL. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23(5):567-575.
Kramer OH, Gottlicher M, Heinzel T. 2001. Histone deacetylase as a therapeutic target. Trends in Endocrinology and Metabolism 12(7):294-300.
Kurita R, Sasaki E, Yokoo T, Hiroyama T, Takasugi K, Imoto H, Izawa K, Dong Y, Hashiguchi T, Soda Y and others. 2006. Tal1/Scl gene transduction using a lentiviral vector stimulates highly efficient hematopoietic cell differentiation from common marmoset (Callithrix jacchus) embryonic stem cells. Stem Cells 24(9):2014-2022.
Kyba M, Perlingeiro RC, Daley GQ. 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109(1):29-37.
Lee CG, Vieira WD, Pastan I, Gottesman MM. 2001. An episomally maintained MDR1 gene for gene therapy. Hum Gene Ther 12(8):945-53.
Lin J, Fernandez I, Roy K. 2010. Development of Feeder-Free Culture Systems for Generation of ckit+sca1+ Progenitors from Mouse iPS Cells. Stem Cell Rev.
Lo W-H, Hwang S-M, Chuang C-K, Chen C-Y, Hu Y-C. 2009. Development of a hybrid baculoviral vector for sustained transgene expression. Mol. Ther:In press.
Moreno-Gimeno I, Ledran MH, Lako M. 2010. Hematopoietic differentiation from human ESCs as a model for developmental studies and future clinical translations. Invited review following the FEBS Anniversary Prize received on 5 July 2009 at the 34th FEBS Congress in Prague. FEBS J 277(24):5014-25.
Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. 2008. Disease-specific induced pluripotent stem cells. Cell 134(5):877-86.
Pick M, Azzola L, Mossman A, Stanley EG, Elefanty AG. 2007. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25(9):2206-14.
Sakai E, Kitajima K, Sato A, Nakano T. 2009. Increase of hematopoietic progenitor and suppression of endothelial gene expression by Runx1 expression during in vitro ES differentiation. Exp Hematol 37(3):334-45.
Sakamoto H, Tsuji-Tamura K, Ogawa M. 2010. Hematopoiesis from pluripotent stem cell lines. Int J Hematol 91(3):384-91.
Strauss R, Huser A, Ni S, Tuve S, Kiviat N, Sow PS, Hofmann C, Lieber A. 2007. Baculovirus-based vaccination vectors allow for efficient induction of immune responses against Plasmodium falciparum circumsporozoite protein. Mol. Ther. 15(1):193-202.
Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663-76.
Tashiro K, Inamura M, Kawabata K, Sakurai F, Yamanishi K, Hayakawa T, Mizuguchi H. 2009. Efficient adipocyte and osteoblast differentiation from mouse induced pluripotent stem cells by adenoviral transduction. Stem Cells 27(8):1802-11.
Tateishi K, He J, Taranova O, Liang G, D'Alessio AC, Zhang Y. 2008. Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601-7.
Thomas CE, Ehrhardt A, Kay MA. 2003. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4(5):346-358.
Tono T, Tsujimura T, Koshimizu U, Kasugai T, Adachi S, Isozaki K, Nishikawa S, Morimoto M, Nishimune Y, Nomura S and others. 1992. c-kit Gene was not transcribed in cultured mast cells of mast cell-deficient Wsh/Wsh mice that have a normal number of erythrocytes and a normal c-kit coding region. Blood 80(6):1448-53.
Vodyanik MA, Bork JA, Thomson JA, Slukvin, II. 2005. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617-26.
Waltzer L, Gobert V, Osman D, Haenlin M. 2010. Transcription factor interplay during Drosophila haematopoiesis. Int J Dev Biol 54(6-7):1107-15.
Wernig M, Meissner A, Foreman R, Brambrink T, Ku MC, Hochedlinger K, Bernstein BE, Jaenisch R. 2007. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318-U2.
Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu DD, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R. 2008. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America 105(15):5856-5861.
Wiles MV, Keller G. 1991. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111(2):259-67.
Winnier G, Blessing M, Labosky PA, Hogan BL. 1995. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9(17):2105-16.
Xi J, Khalil M, Shishechian N, Hannes T, Pfannkuche K, Liang H, Fatima A, Haustein M, Suhr F, Bloch W and others. 2010. Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J 24(8):2739-51.
Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J. 1994. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 8(24):3032-44.
Zeng J, Du J, Zhao Y, Palanisamy N, Wang S. 2007. Baculoviral vector-mediated transient and stable transgene expression in human embryonic stem cells. Stem Cells 25(4):1055-61.
Zhong Y, Sullenbarger B, Lasky LC. 2010. Effect of increased HoxB4 on human megakaryocytic development. Biochem Biophys Res Commun 398(3):377-82.