簡易檢索 / 詳目顯示

研究生: 王俊霖
Wang, Jun-Lin
論文名稱: 基於虛擬反向半正定放寬大量多輸入多輸出偵測演算法與架構設計
Virtually Antipodal Semidefinite Relaxation Based Massive MIMO Detection Algorithm and Architecture Design
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 蔡佩芸
Tsai, Pei-Yun
賴以威
Lai, I-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 47
中文關鍵詞: 凸優化大量多輸入多輸出
外文關鍵詞: TASER
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大量多輸入多輸出系統能夠藉由更有效率的利用空間資源來大幅提升通道容量,並且不需要提升傳送能量和通道帶寬,此項技術也被認為是未來5G通訊中的關鍵技術,然而有了這麼多天線後,實作上的複雜度就變成了在設計接收器時的主要問題,目前已有些針對這問題開發出來的低複雜度演算法,但大多數的都只有接近MMSE的效能,TASER有接近ML的效能,但是其複雜度大於大多數只有MMSE效能的演算法,而且TASER只能使用BPSK和QPSK調變技術,我們提出了基於虛擬反向的TASER演算法,能讓TASER使用16-QAM調變技術,並提出了資料略失真但又保有效能的架構,在常被使用的128×8天線設定下,能讓原來的TASER演算法在幾乎不損失效能的情況下,節省5/6的運算複雜度,如此一來運算複雜度就能比大多數有MMSE效能的演算法還要低,此架構也能套用到提出的基於虛擬反向的TASER演算法上,能有效降低其運算複雜度。


    Massive multiple-input and multiple-output (MIMO) system have significant advantages in improving channel capacity by making higher use of spatial resources without increasing channel bandwidth and transmit power. It is believed to be a key techniques for 5G wireless systems; however, with so many antennas, implementation complexity becomes the major challenge in designing receiver. There are many low-complexity detectors proposed but most of them have only near-MMSE performance. TASER has near-ML performance, but its complexity is stll higher than those have near-MMSE performance. Also, it can use BPSK and QPSK modulation only. We propose a VA-SDR based TASER which can apply 16-QAM modulation. Also, we propose a lossy architecture for TASER. For a commonly used antenna setting, 128$ \times $8, the lossy architecture can reduce about $ \frac{5}{6} $ computational complexity of original TASER such that its computational complexity is less than most of near-MMSE detectors.

    1 Introduction 1 1.1 Multiueser Uplink Massive MIMO Systems . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Organization of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Convex Optimization for Massive MIMO Systems 5 2.1 Uplink Massive MU-MIMO System Model . . . . . . . . . . . . . . . . . 5 2.2 Gauss-Seidel(GS) Based Minimum Mean Square Error Algorithm . . . . 6 2.3 Optimized Coordinate Descent Method (OCD) . . . . . . . . . . . . . . . 7 2.4 Semidefinite Relaxation (SDR) . . . . . . . . . . . . . . . . . . . . . . . . 8 2.5 Triangular Approximate Semidefinite Relaxation (TASER) . . . . . . . . 12 2.5.1 Triangular SDP Fomulation via the Cholesky Decomposition . . . 13 2.5.2 Forward-Backward Splitting (FBS) . . . . . . . . . . . . . . . . . 13 2.5.3 The TASER Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5.4 Coveragence Method . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Proposed TASER Algorithm 19 3.1 Virtually Antipodal SDR (VA-SDR) . . . . . . . . . . . . . . . . . . . . 19 3.2 TASER Combined with VA-SDR . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ii CONTENTS 3.4.1 Square Antenna Setting . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.2 64-QAM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Proposed Lossy Hardware Architecture 31 4.1 Lossy System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3 Computation Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4 Fixed Point Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5 Conclusion 43

    [1] Z. q. Luo, W. k. Ma, A. M. c. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
    of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20–34, 2010.

    [2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, February 2014.

    [3] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5g be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

    [4] B. Yin, M. Wu, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “A 3.8gb/s large- scale mimo detector for 3gpp lte-advanced,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 3879–3883.

    [5] Y. Xue, C. Zhang, S. Zhang, Z. Wu, and X. You, “Steepest descent method based soft-output detection for massive mimo uplink,” in 2016 IEEE International Work- shop on Signal Processing Systems (SiPS), Oct 2016, pp. 273–278.

    [6] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “On the achievable rates of decen- tralized equalization in massive mu-mimo systems,” in 2017 IEEE International
    Symposium on Information Theory (ISIT), June 2017, pp. 1102–1106.

    [7] Z. Wu, C. Zhang, Y. Xue, S. Xu, and X. You, “Efficient architecture for soft-output massive mimo detection with gauss-seidel method,” in 2016 IEEE International Symposium on Circuits and Systems (ISCAS), May 2016, pp. 1886–1889.

    [8] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “Large-scale mimo detection for 3gpp lte: Algorithms and fpga implementations,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 916–929, 2014.

    [9] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Vlsi design of large-scale soft- output mimo detection using conjugate gradients,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2015, pp. 1498–1501.

    [10] S. Shahabuddin, M. Juntti, and C. Studer, “Admm-based infinity norm detection for large mu-mimo: Algorithm and vlsi architecture,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

    [11] O. Castaeda, T. Goldstein, and C. Studer, “Data detection in large multi-antenna wireless systems via approximate semidefinite relaxation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp. 2334–2346, Dec 2016.

    [12] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151, no. 1, pp.3–34, Jun. 2015.

    [13] D. A. Guimaraes, G. H. F. Floriano, and L. S. Chaves, “A tutorial on the cvx sys- tem for modeling and solving convex optimization problems,” IEEE Latin America Transactions, vol. 13, no. 5, pp. 1228–1257, May 2015.

    [14] F. R. Bach and M. I. Jordan, “Predictive low-rank decomposition for kernel meth- ods,” in Proceedings of the 22Nd International Conference on Machine Learning, ser. ICML ’05, 2005, pp. 33–40.

    [15] H. Harbrecht, M. Peters, and R. Schneider, “On the low-rank approximation by the pivoted cholesky decomposition,” Applied Numerical Mathematics, vol. 62, no. 4, pp. 428 –440, 2012.

    [16] W. K. Ma, C. C. Su, J. Jalden, T. H. Chang, and C. Y. Chi, “The equivalence of semidefinite relaxation mimo detectors for higher-order qam,” IEEE Journal of Selected Topics in Signal
    Processing, vol. 3, no. 6, pp. 1038–1052, Dec 2009.

    [17] Z. Mao, X. Wang, and X. Wang, “Semidefinite programming relaxation approach for multiuser detection of qam signals,” IEEE Transactions on Wireless Commu- nications, vol. 6, no. 12, pp.
    4275–4279, December 2007.

    [18] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “Fpga design of a coordinate descent data detector for large-scale mu-mimo,” in 2016 IEEE International Sym-
    posium on Circuits and Systems (ISCAS), May 2016, pp. 1894–1897.

    QR CODE