研究生: |
周川普 Chou, Chuan-Pu |
---|---|
論文名稱: |
多晶鍺錫化合物無接面薄膜式電晶體之缺陷工程及其在神經型態運算之應用 Defect Engineering of Poly-GeSn Junctionless Thin Film Transistors and Its Applications for Neuromorphic Computing |
指導教授: |
巫勇賢
Wu, Yung-Hsien |
口試委員: |
張廖貴術
ChangLiao, Kuei-Shu 吳永俊 Wu, Yung-Chun 李耀仁 Lee, Yao-Jen 吳添立 Wu, Tian-Li |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 167 |
中文關鍵詞: | 多晶鍺錫化合物 、氬氣退火 、氨氣電漿 、鐵電 、氧化鉭 、神經型態運算 |
外文關鍵詞: | Poly-GeSn, Ar annealing, NH3 plasma, Ferroelectric, Ta2O5, Neuromorphic Computing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究多晶GeSn無接面薄膜式電晶體的元件特性及可靠度之研究與探討。同時建立相關理論及製程手法來改善元件特性及可靠度。首先在第二章中,第一部份針對Sn濃度為5.1%的多晶GeSn薄膜結晶性與退火溫度的相依性進行分析,同時也討論SiO2覆蓋層對於多晶GeSn薄膜的影響。探討完最佳之薄膜結晶性後,第二部份探討多晶GeSn薄膜厚度對於無接面薄膜式電晶體的元件特性影響。在第三章中,為再進一步提高薄膜的結晶性,利用各種不同的退火氣體環境來探討對於多晶GeSn薄膜結晶性的影響,同時並探討無接面電晶體的元件特性、晶粒尺寸和通道缺陷密度之相依性。在第四章中,採用Ar氣體退火的多晶GeSn 無接面薄膜式電晶體作為基礎,再進一步探討電漿處理對於元件特性與可靠度的影響。其中Ar氣體退火搭配NH3電漿處理提高了最多的多晶GeSn無接面薄膜式電晶體之元件特性,這主要歸因於較低的介面缺陷密度和通道缺陷密度。在第五章中,基於改善的元件性能,多晶GeSn無接面薄膜式電晶體結合HfZrOx鐵電材料來進行研究與探討。其中鐵電材料的可靠度可以透過NH3電漿處理處理和插入Ta2O5介面層來進行改善。在改善了HfZrOx鐵電材料的可靠度之後,對多晶GeSn無接面薄膜式鐵電記憶體進行了突觸行為應用與評估,包括短期增強作用、長期增強作用、長期抑制作用和脈衝時序依賴可塑性行為。在第六章中,我們通過金屬-鐵電-半導體結構來探討鐵電材料在多晶GeSn薄膜和磊晶GeSn薄膜上之鐵電特性與可靠度之差異。其中通過矽(111)基板上的磊晶之GeSn薄膜與鐵電材料具有更好的介面品質,而使其具有較佳的鐵電特性及可靠度。
This thesis focuses on the investigation of device and reliability performance for poly-GeSn thin film transistors (TFTs). We develop theories and processes to reinforce device performance and reliability. After the introduction in Chapter 1, the effect of annealing temperature and SiO2 capping layer on the crystallinity of poly-GeSn film with Sn concentration of 5.1% is investigated by various physical analyses in Chapter 2. Based on the best crystallinity, the impact of channel thickness on JL TFTs devices performance is explored by electrical analyses. To further improve the crystallinity of poly-GeSn film, the effects of annealing gas ambient on grain size, channel defect density and consequent device electrical characteristics are studied in Chapter 3. In Chapter 4, poly-GeSn JL TFTs with Ar gas annealing are employed as the vehicle to explore how plasma treatments affect device performance and reliability. NH3 plasma treatment is found to be effective in improving poly-GeSn device performance, mainly resulting from lower defect density of bulk and channel defect density. In Chapter 5, based on the enhanced device performance, poly-GeSn JL TFTs gated with ferroelectric HfZrOx materials are well investigated. The reliability of ferroelectric TFTs (Fe-TFTs) can be achieved by using NH3 plasma treatment and inserting an interfacial layer of Ta2O5. Then the Fe-TFTs are evaluated for synaptic device applications including STP, LTP, LTD and STDP behaviors. In Chapter 6, by using metal-ferroelectric-semiconductor (M-F-S) structure as the platform, the correlation between substrate crystallinity (polycrystalline GeSn or epitaxial GeSn) and the quality of ferroelectric HfZrOx film is explored. Finally, conclusions of this work and further recommendations to improve the device performance are made.
1.1 C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp.642-645, 2014.
1.2 Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
1.3 K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
1.4 H. Haesslein, R. Sielemann, and C. Zistl, “Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy”, Phys. Rev. Lett., vol. 80, no. 12, pp. 2626-2629, 1998.
1.5 R. Sielemanna, H. H.assleina, C. Zistla, M. M. ullera, L. Stadlera, and V. V. Emtsev, “Vacancies and self-interstitials in germanium:a picture derived from radioactive probes”, J. Appl. Phys. Physica B, vol. 308, pp. 529-534, 2001.
1.6 S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
1.7 R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, and I. A. Young, “Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors”, Appl. Phys. Lett., vol. 102, no. 11, p. 113106, 2013.
1.8 S. Gupta, B. Magyari-Kope, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain”, Jpn. J. Appl. Phys., vol. 113, no. 7, p. 073707, 2013.
1.9 J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 98, no. 6, p. 061108, 2011.
1.10 M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric FET analog synapse for acceleration of deep neural network training”, IEDM Tech. Dig., pp. 139-142, 2017.
1.11 W. Chung, M. Si, and P. D. Ye, “First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin”, IEDM Tech. Dig., pp. 344-347, 2018.
1.12 M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur, B. C. Jang, S. Yun, S. Cho, W.-K. Kim, M.-S. Kim, K.-M. Hwang, S. Hong, S.-Y. Choi, and Y.-K. Choi, “First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1445-1148, 2018.
1.13 H. Mulaosmanovic, J. Ocker, S. Muller, M. Noack, J. Muller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel ferroelectric FET based synapse for neuromorphic systems”, Symp. VLSI Technol., pp. T176-T177, 2017.
1.14 晶圓級(wafer level)三維晶粒堆疊封裝之近況發展, 世界材料網 (2007).
1.15 J. H. Lau, “TSV manufacturing yield and hidden costs for 3D IC integration”, 60th Electron. Components and Technol. Conference (ECTC), pp. 1031-1042, 2010.
1.16 T. Whipple, T. Kukal, K. Felton, and V. Gerousis, “IC-Package Co-design and Analysis for 3D-IC Designs”, IEEE Int. Conference on 3D Syst. Integration, pp. 1-6, 2009.
1.17 R. Chaware, G. Hariharan, J. Lin, I. Singh, G. O'Rourke, K. Ng, S. Y. Pai, C.-C. Li, Z. Huang, and S. K. Cheng, “Assembly Challenges in Developing 3D IC Package with Ultra High Yield and High Reliability”, Electron. Components and Tech. Conference, pp. 1447-1451, 2015.
1.18 M.-F. Lai, S.-W. Li, J.-Y. Shih, and K.-N. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies", Microelectron. Eng., vol. 88, no. 11, pp. 3282-3286, 2011.
1.19 J. H. Lau, and T. G. Yue, "Thermal Management of 3D IC Integration with TSV (Through Silicon Via)", 59th Electron. Components and Tech. Conference, pp. 635-640, 2009.
1.20 S. Panth, K. Samadi, K. Y. Du, and K. Sung Kyu Lim, “High-Density Integration of Functional Modules Using Monolithic 3D-IC Technology”, 18th Asia and South Pacific Des. Autom. Conference (ASP-DAC), pp. 681-686, 2013.
1.21 M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, H.-S. P. Wong, and S. Mitra, "Monolithic 3D Integration of Logic and Memory: Carbon Nanotube FETs, Resistive RAM, and Silicon FETs", IEDM Tech. Dig., pp. 638-641, 2014.
1.22 K. Chang, K. Acharya, S. Sinha, B. Cline, G. Yeric, and S. K. Lim, "Power Benefit Study of Monolithic 3D IC at the 7nm Technology Node", IEEE/ACM Int. Symp. on Low Power Electron. and Des. (ISLPED), pp. 201-206, 2015.
1.23 C. Edwards, “European chip technology to use IoT in bid to recapture ground”, Engineering and Technology Magazine, 10, 2015.
1.24 C.-W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J.-P. Colinge, “High-temperature performance of silicon junctionless MOSFETs”, IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 620-625, 2010.
1.25 D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokoe, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm”, IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000.
1.26 N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “High-performance fully depleted silicon nanowire diameter/spl les/5 nm) gate-all-around CMOS devices”, IEEE Electron Device Lett., vol. 27, no. 5, pp. 383-386, 2006.
1.27 C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor”, Appl. Phys. Lett., vol. 94, no. 5, p. 053511, 2009.
1.28 J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. ONeill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions”, Nat. Nanotechnol., vol. 5, no. 3, pp. 225-229, 2010.
1.29 J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy system”, Phys. Rev. B., vol. 75, no. 4, p. 045208, 2007.
1.30 M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs”, IEDM Tech. Dig., pp. 306-309, 2016.
1.31 T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors”, IEDM Tech. Dig., pp. 547-550, 2011.
1.32 D.A. Buck, Ferroelectrics for Digital Information and Switching, 1952.
1.33 S.S. Eaton, D.B. Butler, M. Parris et al., “A Ferroelectric Nonvolatile Memory”, IEEE International Solid-State Circuits Conference (ISSCC), p. 130, 1988.
1.34 D. J. Jung, F. D. Morrison, M. Dawber, H. H. Kim, K. Kim, and J. F. Scott, “Effect of microgeometry on switching and transport in lead zirconate titanate capacitors: Implications for etching of nano-ferroelectrics,” J. Appl. Phys., vol. 95, no. 9, pp. 4968-4975, 2004.
1.35 L. Van Hai, M. Takahashi, and S. Sakai, “Downsizing of ferroelectric-gate field-effect-transistors for ferroelectric-NAND flash memory cells,” IEEE Int. Mem. Work. (IMW), pp. 1-4, 2011.
1.36 A. M. Ionescu, “Nanoelectronics: Ferroelectric devices show potential,” Nat. Nanotechnol., vol. 7, no. 2, pp. 83-85, 2012.
1.37 J. Muller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, and T. Mikolajick, "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG", Symp. VLSI Technol., pp. 25-26, 2012.
1.38 N. Gong, and T.-P. Ma, “Why Is FE-HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective”, IEEE Electron Device Lett., vol. 37, no. 9, pp. 1123-1126, 2016.
1.39 J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, and T. Mikolajick, “Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories”, IEDM Tech. Dig., pp. 280-283, 2013.
2.1 C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp.642-645, 2014.
2.2 Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
2.3 K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
2.4 H. Haesslein, R. Sielemann, and C. Zistl, “Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy”, Phys. Rev. Lett., vol. 80, no. 12, pp. 2626-2629, 1998.
2.5 R. Sielemanna, H. H.assleina, C. Zistla, M. M. ullera, L. Stadlera, and V. V. Emtsev, “Vacancies and self-interstitials in germanium:a picture derived from radioactive probes”, J. Appl. Phys. Physica B, vol. 308, pp. 529-534, 2001.
2.6 S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
2.7 R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, and I. A. Young, “Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors”, Appl. Phys. Lett., vol. 102, no. 11, p. 113106, 2013.
2.8 S. Gupta, B. Magyari-Kope, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain”, J. Appl. Phys., vol. 113, no. 7, p. 073707, 2013.
2.9 J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 98, no. 6, p. 061108, 2011.
2.10 A. Hara, Y. Nishimura, and H. Ohsawa, “Self-aligned metal double-gate junctionless p-channel low-temperature polycrystalline-germanium thin-film transistor with thin germanium film on glass substrate”, J. Appl. Phys., vol. 56, p. 03BB01, 2016.
2.11 H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
2.12 K. K. Ng, and W. T. Lynch, “The impact of intrinsic series resistance on MOSFET scaling”, IEEE Trans. Electron Devices, vol. 34, no. 3, pp. 503-511, 1987.
2.13 H. Oka, T. Amamotom, M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
2.14 A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”, World J. Nano. Sci. Eng., vol. 2, no. 3, pp.154-160, 2012.
2.15 Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, and W. I. Cho, “Germanium-tin alloy nanocrystals for high-performance lithium ion batteries”, Phys. Chem. Chem. Phys, vol. 15, no. 28, p. 11691, 2013.
2.16 J. Y. Lee, B. Song, J. Kim, C.-W. Lee, S. Han, C.-W. Baik, H. Jeong, Y. Kim, and C. S. Lee, “Nanofabrication of low extinction coefficient and high-aspect-ratio Si structures for metaphotonic applications”, Proc. SPIE, vol. 9927, p. 992708, 2016.
2.17 S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, “Impacts of oxygen passivation on poly-crystalline germanium thin film transistor”, Thin Solid Films, vol. 557, pp. 334-337, 2014.
2.18 K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, “Electrical properties of poly-Ge on glass substrate grown by two-step solid-phase crystallization”, Solid-State Electronics, vol. 53, no. 11, pp. 1159-1164, 2009.
2.19 R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
2.20 H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
2.21 S. Fujii, S.-I. Kuroki, M. Numata, K. Kotani, and T. Ito, Roughness reduction in polycrystalline silicon thin films formed by continuous-wave laser lateral crystallization with cap SiO2 Thin Films, J. Appl. Phys., vol. 48, no. 4, p. 04C129, 2009.
2.22 M. Shayesteh, K. Huet, I. Toqué-Tresonne, R. Negru, C. L. M. Daunt, N. Kelly, D. O’Connell, R. Yu, V. Djara, P. B. Carolan, N. Petkov, and R. Duffy, “Atomically flat low-resistive germanide contacts formed by laser thermal anneal”, IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2178-2185, 2013.
2.23 Z. Liliental, R. W. Carpenter, and R. Tuenge, “How epitaxial are Pd2Si-Si interfaces?”, Thin Solid Films, vol. 104, pp. 17-29, 1983.
2.24 V. K. Dugaev, and V. I. Litvinov, “Electric-current transmission through the contact of two metals”, Phys. Rev. B, vol. 52, no. 7, pp. 5306-5312, 1995.
2.25 D. A. Neamen, Semiconductor Physics and Devices. 4th ed., McGraw-Hill, New York, 2012, 349.
3.1. C. Fenouillet-Beranger, B.Mathieu, B. Previtali, M-P. Samson, N.Rambal, V. Benevent, S. Kerdiles, J-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D.Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, in IEDM Tech. Dig., pp.642-645, 2014.
3.2. Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration”, in Symp. VLSI Tech. Dig., pp. 94-95, 2013.
3.3. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate poly-Ge junction-less p- and n-MOSFETs fabricated by flash lamp annealing process”, in IEDM Tech. Dig., pp. 422-425, 2014.
3.4. C. Sun, R. Liang, L. Liu, J. Wang, and J. Xu, “Leakage current of germanium-on-insulator-based junctionless nanowire transistors”, Appl. Phys. Lett., vol. 107, no. 13, p. 132105, 2015.
3.5. S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: extending the Ge electronics roadmap”, in IEDM Tech. Dig., pp. 398-401, 2011.
3.6. H. Oka, T. Amamotom M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
3.7. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth”, J. Phys. D Appl. Phys., vol. 48, no. 44, p. 445103, 2015.
3.8. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, in IEDM Tech. Dig., pp.580-583, 2016.
3.9. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”, World J. Nano. Sci. Eng., vol. 2, no. 3, pp.154-160, 2012.
3.10. S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, “Impacts of oxygen passivation on poly-crystalline germanium thin film transistor”, Thin Solid Films, vol. 557, pp. 334-337, 2014.
3.11. A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, Journal of Appl. Phys., vol. 82, no. 9, pp. 4303-4309, 1997.
3.12. M. Konsolakis, “Recent advances on nitrous oxide (N2O) decomposition over nonnoble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects”, ACS Catal., vol. 5, no. 11, pp. 6397-6421, 2015.
3.13. V. K. Bhat, K. N. Bhat, and A. Subrahmanyam, “Growth of ultrathin oxides of silicon by wet oxidation at very low (0.04 atm) water vapour pressure”, Semicond. Sci. Tech., vol. 16, no. 11, pp. 925-929, 2001.
3.14. M. V. Fischetti, and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, 1996.
3.15. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
3.16. S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films”, IEDM Tech. Dig., pp. 213-216, 2004.
3.17. C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application”, Symp. VLSI Technol., pp. 56-57, 2004.
3.18. K. W. Ang, K. J. Chui, V. Blimetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. C. Yeo, “Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions”, IEDM Tech. Dig., pp. 1069-1071, 2004.
3.19. C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia, Y. M. Sheu, W. T. Lu, W. M. Chen, and S. S. Lin, “Investigation and localization of the SiGe source/drain (S/D) strain-induced defects in PMOSFET with 45-nm CMOS technology”, IEEE Electron Device Lett., vol. 28, no.5, pp. 408-411, 2007.
3.20. Y. S. Huang, Y. J. Tsou, C. H. Huang, C. H. Huang, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, and C. P. Chang, “High-mobility CVD-grown Ge/strained Ge0.9Sn0.1/Ge quantum-well pMOSFETs on Si by optimizing Ge cap thickness”, IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2498-2504, 2017.
3.21. K. J. Lee, H. Ahn, M. J. Motala, R. G. Nuzzo, E. Menard, and J. A. Rogers, “Fabrication of microstructured silicon (µs-Si) from a bulk Si wafer and its use in the printing of high-performance thin-film transistors on plastic substrates”, J. Micromech. Microeng., vol. 20, no. 7, p. 075018, 2010.
3.22. A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, J. Appl. Phys., vol. 82, no. 9, pp. 4303-4309, 1997.
3.23. N. Yamauchit, J. J. Hajjar, and R. Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size”, IEDM Tech. Dig., pp. 353-356, 1989.
3.24. D. Palumbo, S. Masala, P. Tassini, A. Rubino, and D. D. Sala, “Electrical stress degradation of small-grain polysilicon thin-film transistors”, Trans. Electron Devices, vol. 54, no. 3, pp. 476-482, 2007.
3.25. W. C. Y. Ma, K. Chang, Y. C. Lin, and T. H. Wu, “Plasma-induced interfacial layer impacts on TFETs with poly-Si channel film by oxygen plasma surface treatment”, Trans. Plasma Sci., vol. 44, no. 12, pp.3214-3218, 2016.
3.26. M. Kurosawa, Y. Kamata, H. Ikenoue, N. Taoka, O. Nakatsuka, T. Tezuka, and S. Zaima, “Sub-300oC fabrication of poly-GeSn junctionless tri-gate p-FETs enabling sequential 3D integration of CMOS circuits”, SSDM, pp.684-685, 2014.
4.1. C. Fenouillet-Beranger, B.Mathieu, B. Previtali, M-P. Samson, N.Rambal, V. Benevent, S. Kerdiles, J-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D.Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, in IEDM Tech. Dig., pp.642-645, 2014.
4.2. Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
4.3. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
4.4. C. Sun, R. Liang, L. Liu, J. Wang, and J. Xu, “Leakage current of germanium-on-insulator-based junctionless nanowire transistors”, Appl. Phys. Lett., vol. 107, no. 13, p. 132105, 2015.
4.5. J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy system”, Phys. Rev. B., vol. 75, no. 4, p. 045208, 2007.
4.6. S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
4.7. H. Oka, T. Amamotom, M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
4.8. M. Kurosawa, Y. Kamata, H. Ikenoue, N. Taoka, O. Nakatsuka, T. Tezuka, and S. Zaima, “Sub-300oC fabrication of poly-GeSn junctionless tri-gate p-FETs enabling sequential 3D integration of CMOS circuits”, SSDM, pp.684-685, 2014.
4.9. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth”, J. Phys. D Appl. Phys., vol. 48, no. 44, p. 445103, 2015.
4.10. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
4.11. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
4.12. G. Han, S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, “High-mobility germanium-tin (GeSn) P-channel MOSFETs featuring metallic source/drain and sub-370 °C process modules”, IEDM Tech. Dig., pp. 402-404, 2011.
4.13. R. R. Lieten, T. Maeda, J. W. Seo, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, C. Fleischmann, A. Vantomme, B. C. Johnson, and J. P. Locquet, “Solid phase epitaxy of GeSn alloys on silicon and integration in MOSFET devices, ECS Trans., vol. 64, no. 11, pp. 149-160, 2014.
4.14. Y. C. Fang, K. Y. Chen, C. H. Hsieh, C. C. Su, and Y. H. Wu, “N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility, ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26374-26380, 2015.
4.15. W. C. Y. Ma, T. Y. Chiang, J. W. Lin, and T. S. Chao, “Oxide thinning and structure scaling down effect of low-temperature poly-Si thin-film transistors”, J. Display Technol., vol. 8, no. 1, pp. 12-17, 2012.
4.16. W. C. Y. Ma, K. Chang, Y. C. Lin, and T. H. Wu, “Plasma-induced interfacial layer impacts on TFETs with poly-Si channel film by oxygen plasma surface treatment”, IEEE Trans. Plasma Sci., vol. 44, no. 12, pp. 3214-3218, 2016.
5.1. C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp. 642-645, 2014.
5.2. J. S. Lee, S. Chang, S.-M. Koo, and S. Y. Lee “High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature”, IEEE Electron Device Lett., vol. 31, no. 3, pp. 225-227, 2010.
5.3. J.-S. Seo, and B.-S. Bae, “Improved electrical performance and bias stability of solution processed active bilayer structure of indium zinc oxide based TFT”, ACS Appl. Mater. Interfaces, vol. 6, no. 17, pp. 15335-15343, 2014.
5.4. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
5.5. C.-P. Chou, Y.-X. Lin, and Y.-H. Wu, “Implementing P-channel junctionless thin-film transistor on Poly-Ge0.95Sn0.05 film formed by amorphous GeSn deposition and annealing”, IEEE Electron Device Lett., vol. 39, no. 8, pp. 1187-1190, 2018.
5.6. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
5.7. M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric FET analog synapse for acceleration of deep neural network training”, IEDM Tech. Dig., pp. 139-142, 2017.
5.8. W. Chung, M. Si, and P. D. Ye, “First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin”, IEDM Tech. Dig., pp. 15.2.1-15.2.4.
5.9. M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur, B. C. Jang, S. Yun, S. Cho, W.-K. Kim, M.-S. Kim, K.-M. Hwang, S. Hong, S.-Y. Choi, and Y.-K. Choi, “First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1445-1148, 2018.
5.10. H. Mulaosmanovic, J. Ocker, S. Muller, M. Noack, J. Muller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel ferroelectric FET based synapse for neuromorphic systems” Symp. VLSI Technol., pp. T176-T177, 2017.
5.11. K.-T. Chen, C.-Y. Liao, C. Lo, H.-Y. Chen, G.-Y. Siang, S. Liu, S.-C. Chang, M.-H. Liao, S.-T. Chang, and M. H. Lee, “Improvement on ferroelectricity and endurance of ultra-thin HfZrO2 capacitor with molybdenum capping electrode”, Electron Devices Tech. and Manufacturing Conference, pp. 62-64, 2019.
5.12. A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, and A. Zenkevich, “Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si”, ACS Appl. Mater. Interfaces, vol. 8, no.11, pp. 7232-7237, 2016.
5.13. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2”, Nano Lett., vol. 12, no. 8, pp. 4318-4323, 2012.
5.14. M.-K. Kim, and J.-S. Lee, “Ferroelectric analog synaptic transistors”, Nano Lett., vol. 19, no. 3, pp. 2044-2050, 2019.
5.15. Y. Li, R. Liang, J. Wang, Y. Zhang, H. Tian, H. Liu, S. Li, W. Mao, Y. Pang, Y. Li, Y. Yang, and T.-L. Ren, “A ferroelectric thin film transistor based on annealing-free HfZrO film”, IEEE J. Electron Devices Soc., vol. 5, no. 5, pp. 378-383, 2017.
5.16. K. Moto, R. Yoshimine, T. Suemasu, and K. Toko, “Improving carrier mobility of polycrystalline Ge by Sn doping”, Scientific Reports, vol. 8, no. 1, p. 14832, 2018.
5.17. H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics”, Opt. Mater. Express, vol. 3, no. 9, pp. 1385-1396, 2013.
5.18. H. Pérez Ladrón de Guevara, H. Navarro-Contreras, and M. A. Vidal, “Growth and characterization of Ge1-xSnx alloys grown by magnetron sputter deposition”, Superficies y Vacio, vol. 16, pp. 21-24, 2003.
5.19. Y. Goh, and S. Jeon, “The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2”, Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
5.20. Y. S. Chai, Y. S. Oh, L. J. Wang, N. Manivannan, S. M. Feng, Y. S. Yang, L. Q. Yan, C. Q. Jin, and K. H. Kim, “Intrinsic ferroelectric polarization of orthorhombic manganites with E -type spin order”, Phys. Rev. B, vol. 85, no. 18, p. 184406, 2012.
5.21. S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang, “HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications”, IEEE Electron Device Lett., vol. 38, no. 6, pp. 732-735, 2017.
5.22. K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, and Y.-H. Wu, “Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors”, IEEE Electron Device Lett., vol. 39, no. 1, pp. 87-90, 2018.
5.23. K.-Y. Chen, Y.-H. Huang, R.-W. Kao, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Enhanced Reliability of Ferroelectric HfZrOx on Semiconductor by Using Epitaxial SiGe as Substrate”, IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3636-3639, 2019.
5.24. N. Gong, and T.-P. Ma, “Why ss FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? a retention perspective”, IEEE Electron Device Lett., vol. 37, no. 9, pp. 1123-1126, 2016.
5.25. P. J. Schorn, U. Böttger, and R. Waser, “Monte carlo simulations of imprint behavior in ferroelectrics”, Appl. Phys. Lett., vol. 87, no. 24, p. 242902, 2005.
5.26. J. Aubin, J.M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layer”, J. Cryst. Growth, vol. 473, pp. 20-27, 2017.
5.27. R. Loo, Y. Shimura, S. Ike, A. Vohra, T. Stoica, D. Stange, D. Buca, D. Kohen, J. Margetis, and J. Tolle, “Epitaxial GeSn: impact of process conditions on material quality”, Semicond. Sci. Technol., vol. 33, no. 11, pp. 114010, 2018.
5.28. P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, F. Jose, S. Dash, K. Suzuki, and H. Suematsu, “Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique”, Mater. Chem. Phys., vol. 200, pp. 78-84, 2017.
5.29. D. D. Zhao, T. Nishimura, C. H. Lee, K. Nagashio, K. Kita, and A. Toriumi, “Junctionless Ge p-Channel metal-oxide-semiconductor field-effect transistors fabricated on ultrathin Ge-on-insulator substrate”, Appl. Phys. Express, vol. 4, no. 3, p. 031302, 2011.
5.30. C.-P. Chou, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Poly-GeSn junctionless P-TFTs featuring a record high ION/IOFF ratio and hole mobility by defect engineering”, J. Mater. Chem. C, vol. 7, no. 17, pp. 5201-5208, 2019.
5.31. W. C.-Y. Ma, S.-W. Yuan, T.-C. Chan, and C.-Y. Huang, “Threshold voltage reduction and mobility improvement of LTPS-TFTs with NH3 plasma treatment”, IEEE Trans. on Plasma Sci., vol. 42, no. 12, pp. 3722-3725, 2014.
5.32. Y. Kamata, Y. Kamimuta, T. Ino, and A. Nishiyama, “Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks”, Jpn. J. Appl. Phys., vol. 44, pp. 2323-2329, 2005.
5.33. C.-Y. Sze, and J. Y.-M. Lee, “Electrical characteristics of metal-ferroelectric (PbZrxTi1-xO3)-insulator (Ta2O5)-silicon structure for nonvolatile memory applications”, J. Vac. Sci. Technol. B, vol. 18, no. 6, pp. 2848-2850, 2000.
5.34. R. Srinivasan, B. H. Davis, O. B. Cavin, and C. R. Hubbard, “Crystallization and phase transformation process in zirconia: an in situ high-temperature X-ray diffraction study”, J. Am. Ceram. Soc., vol. 75, no. 5, pp. 1217-1222, 1992.
5.35. C. Joseph, P. Bourson, and M. D. Fontana,“Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy”, J. Raman Spectrosc., vol. 43, no. 8, pp. 1146-1150, 2012.
5.36. M. Tang, X. Xu, Z. Ye, Y. Sugiyama, and H. Ishiwara, “Impact of HfTaO buffer layer on data retention characteristics of ferroelectric-gate FET for nonvolatile memory applications”, IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 370-375, 2011.
5.37. J. Zhou, G. Han, Q. Li, Y. Peng, X. Lu, C. Zhang, J. Zhang, Q.-Q. Sun, D. W. Zhang, and Y. Hao, Ferroelectric HfZrOx Ge and GeSn PMOSFETs with sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids, IEDM Tech. Dig., pp. 310-313, 2016.
5.38. M.-K. Kim, and J.-S. Lee, “Ferroelectric analog synaptic transistors”, Nano Lett., vol. 19, no. 3, pp. 2044-2050, 2019.
5.39. A. J. Arnold, A. Razavieh, J. R. Nasr, D. S. Schulman, C. M. Eichfeld, and S. Das, “Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors, ACS Nano, vol. 11, no. 3, pp. 3110-3118, 2017.
5.40. T. Moraitis, A. Sebastian, and E. Eleftheriou, “The role of short-term plasticity in neuromorphic learning: learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity”, IEEE Nanotechnology Magazine, vol. 12, no. 3, pp. 45-53, 2018.
5.41. P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 12, pp. 3067-3080, 2018.
5.42. P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures”, IEDM Tech. Dig., pp. 135-138, 2017.
5.43. P.-Y. Chen, and S. Yu, “Technological benchmark of analog synaptic devices for neuroinspired architectures”, IEEE Design & Test, vol. 36, no.3, pp. 31-38, 2019.
5.44. A. H. Jaafar, R. J. Gray, E. Verrelli, M. O'Neill, S. M. Kelly, and N. T. Kemp, “Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems”, Nanoscale, vol. 9, no. 43, pp. 17091-17098, 2017.
5.45. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P.Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation”, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2729-2737, 2011.
6.1. M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs”, IEDM Tech. Dig., pp. 306-309, 2016.
6.2. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors”, IEDM Tech. Dig., pp. 547-550, 2011.
6.3. K.-Y. Chen, Y.-H. Huang, R-W. Kao, Y.-X. Lin, and Y.-H. Wu, “Dependence of reliability of ferroelectric HfZrOx on epitaxial SiGe film with various Ge content”, Symp. VLSI Technol., pp. 119-120, 2018.
6.4. C.-J. Su, T.-C. Hong, Y.-C. Tsou, F.-J. Hou, P.-J. Sung, M.-S. Yeh, C.-C. Wan, K.-H. Kao, Y.-T. Tang, C.-H. Chiu, C.-J. Wang, S.-T. Chung, T.-Y. You, Y.-C. Huang, C.-T. Wu, K.-L. Lin, G.-L. Luo, K.-P. Huang, Y.-J. Lee, T.-S. Chao, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of Sub-60 mV/dec and biasing effects on ferroelectric reliability”, IEDM Tech. Dig., pp. 369-372, 2017.
6.5. P. D. Lomenzo, Q. Takmeel, C. M. Fancher, C. Zhou, N. G. Rudawski, S. Moghaddam, J. L. Jones, and T. Nishida, “Ferroelectric Si-doped HfO2 device properties on highly doped germanium”, IEEE Electron Device Lett., vol. 36, no. 8, pp. 766-768, 2015.
6.6. T.-T. Wu, W.-H. Huang, C.-C. Yang, H.-C. Chen, T.-Y. Hsieh, W.-S. Lin, M.-H. Kao, C.-H. Chen, J.-Y Yao, Y.-L. Jian, C.-C. Hsu, K.-L. Lin, C.-H. Shen, Y.-L. Chueh, and J.-M. Shieh, “High performance and low power monolithic three-dimensional sub-50 nm Poly Si thin film transistor (TFTs) circuits”, Sci. Rep., vol. 7, no. 1, p. 1368, 2017.
6.7. Y.-S. Li, C.-Y. Wu, C.-Y. Liao, J.-D. Luo, K.-C. Chuang, W.-S. Li, and H.-C. Cheng, “Effects of crystallinity on the electrical characteristics of counter-doped polycrystalline germanium thin-film transistor via continuous-wave laser crystallization”, J. Electron Devices Soc., vol. 7, pp. 544-550, 2019.
6.8. Y.-C. Fang, K.-Y. Chen, C.-H. Hsieh, C.-C. Su, and Y.-H. Wu, “N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility”, ACS Appl. Mater. Interfaces., vol. 7, no. 48, pp. 26374-26380, 2015.
6.9. D. Lei, K. H. Lee, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, S. Xu, Y. Wu, Y.-C. Huang, H. Chung, S. S. Chu, S Kuppurao, C. S. Tan, X. Gong, and Y.-C. Yeo, “The first GeSn FinFET on a novel GeSnOI substrate achieving lowest S of 79 mV/decade and record high Gm, int of 807 μS/μm for GeSn P-FETs”, Symp. VLSI Technol., pp. T198-T199, 2017.
6.10. Y.-S. Huang, F.-L. Lu , Y.-J. Tsou, H.-Y. Ye, S.-Y. Lin, W.-H. Huang, and C. W. Liu, “Vertically stacked strained 3-GeSn-nanosheet pGAAFETs on Si using GeSn/Ge CVD epitaxial growth and the optimum selective channel release process”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1274-1277, 2018.
6.11. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
6.12. Y. H. Wu, W. J. Chen, A. Chin, and C. Tsai, “The effect of native oxide on epitaxial SiGe from deposited amorphous Ge on Si”, Appl. Phys. Lett., vol. 74, no. 4, pp. 528-530, 1999.
6.13. Y. Suzuki, Y. Oniki, Y. Iwazaki, and T. Ueno, “Bulk and interface engineering of GeO2/Ge for High-κ/Germanium gate stack”, ECS Trans., vol. 41, no. 3, p. 29, 2011.
6.14. K. Kita, C. H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi, “Control of properties of GeO2 films and Ge/GeO2 interfaces by the suppression of GeO volatilization”, ECS Trans., vol. 19, no. 2, pp. 101-116, 2009.
6.15. C.-W. Lee, Y.-H. Wu, C.-H. Hsieh, and C.-C. Lin, “Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb2O3-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness”, Appl. Phys. Lett., vol. 105, no. 20, p. 203508, 2014.
6.16. C.-P. Chou, Y.-X. Lin, and Y.-H. Wu, “Implementing P-channel junctionless thin-film transistor on Poly-Ge0.95Sn0.05 film formed by amorphous GeSn deposition and annealing”, IEEE Electron Device Lett., vol. 39, no. 8, pp. 1187-1190, 2018.
6.17. K.-Y. Chen, Y.-H. Huang, R.-W. Kao, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Enhanced reliability of ferroelectric HfZrOx on semiconductor by using epitaxial SiGe as substrate”, IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3636-3639, 2019.
6.18. K.-Y. Chen, P.-H. Chen, and Y.-H. Wu, “Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment”, Symp. VLSI Technol., pp. T84-T85, 2017.