研究生: |
江佳芳 Chiang, Chia-Fang |
---|---|
論文名稱: |
生物體操控裝置之設計與製作 Design and Fabrication of Biological Objects Manipulation Device |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 仿生微機電 、雷諾數 、操控 |
外文關鍵詞: | Biomimic MEMS, Reynolds number, Manipulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑒於醫療科學和臨床診斷上的需求,生物科學的技術在近年來蓬勃發展。在生醫科技研究的範疇中,尤其重要的是研究細胞、細菌之間或細胞與細菌之間的相互影響。因此,生物體操控工具在這一些研究應用上就變得十分重要。目前已有許多生物體操控裝置被提出,但各有其優缺點;其中最令人無法接受的缺點就是在操控的過程中,因高能量或直接接觸而導致對生物體造成傷害。所以,我們致力於發展一個可以避免這一些問題的生物體操控平台。
本研究中,我們向大自然學習並提出一種極具創意□模仿龍蝦觸鬚捕捉水中氣味分子□的生物體操控裝置。此一操控方式,無需任何高溫、高電壓、或強光等操作條件,而以局部流場間接帶動目標生物體,具有非破壞性、非接觸性操控的優點,尤其適用在生物體的操控。實驗中,我們以微機電系統的技術作為平台製作出微陣列結構,並在流場中以靜電方式驅動微結構使其產生拖曳力,進而操控微粒子。在論文中,先後討論結構設計與靜電力之關係和對周圍流場的影響,並針對致動條件作闡述和討論。除此之外,文中亦說明微元件之製作方法和所遇到的製程困難,並個別提出解決之道。由理論分析輔以實驗結果佐證,藉由幾何的尺寸設計和時序的輸入電壓控制,微致動器可以改變局部流場從而達到操控微粒子的功能。
Recently, bio-technology is a fast-growing research field due to the requirement of medical science and clinical diagnosis. Among all these research subjects, the investigation of the interaction between cells and bacteria are especially important and as a consequence a tool capable of biological object manipulation is influential for these applications. Although there have been various kinds of existing tools proposed for bio-object manipulation, each of them has their own drawbacks. The most unacceptable one could be the invasion of the biological object due to high energy density or direct contact. Thus, we aim at developing a device which could avoid some problems encountered before.
In this research, a lobster-sniffing inspired actuator for micro-objects manipulation in liquid environment using electrostatic actuation is proposed. Structure analyses, electromechanical simulation and the simulation model which investigates the interaction between the biomimic actuator and their surrounding fluid are carried out to acquire design criteria. With the dimensional finger design and sequential voltage control, the feasibility and functionality of micro-object manipulation by varying local fluid field is experimentally observed. Since our device manipulates particle via controlling the fluid surrounding the targeted particle, it is a potential tool for the applications of non-contact and non-invasive micro-manipulation in liquid environment.
1. H. C. Nathanson and R. A. Wickstrom, “A Resonant-Gate Silicon Surface Transistor with High Q Bandpass Properties,” Applied Physics Letters, 7, 84, (1965).
2. L.-S. Fan, Y.-C. Tai, and R. S. Muller, “IC-Processed Electrostatic Micromotors,” Sensors and Actuators A, 20, 41-7 (1989).
3. http://www.bellsystemmemorial.com/belllabs_transistor.html
4. http://www.lionixbv.nl/
5. C. Hammond, “Cellular and Molecular Neurobiology,” pp. 177-80, Academic Press, San Diego, 1996.
6. Y. Suzuki, “Flexible Microgripper and its Application to Micro-Measurement of Mechanical and Thermal Properties,” Proc. IEEE MicroElectroMechanical Systems Workshop (MEMS’96), pp. 406-11, San Diego, California, USA, Feb. 11-15, 1996.
7. A. Ashkin, “History of Optical Trapping and Manipulation of Small-Neutral Particle, Atoms, and Molecules,” IEEE Journal of Selected Topics in Quantum Electronics, 6, 841-56 (2000).
8. C.-J. Kim, A. P. Pisano, R. S. Muller, M. G.. Lim, “Polysilicon Microgripper,” Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, Hilton Head, SC, USA, June 4-7, 1990.
9. C.-J. Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” Journal of Microelectromechanical Systems, 1, 31-6 (1992).
10. Pohl, Dielectrophoresis, Cambridge Press, 1978
11. X.-B. Wang, Y. Huang, P.R.C. Gascoyne, F. F. Becker, “Dielectrophoretic Manipulation of Particles,” IEEE Transactions on Industry Applications, 33, 660-9 (1997).
12. W. M. Arnold, “Positioning and Levitation Media for the Separation of Biological Cells,” IEEE Transactions on Industry Applications, 37, 1468-75 (2001).
13. G. Medoro, N. Manaresi, M. Tartagni, R. Guerrieri, “CMOS-Only Sensors and Manipulators for Microorganisms,” Technical Digest, International Electron Devices Meeting (IEDM), pp. 415-18, San Francisco, CA, USA, Dec. 10-13, 2000.
14. N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, R. Guerrieri, “A CMOS Chip for Individual Cell Manipulation and Detection,” IEEE Journal of Solid-State Circuits, 38, 2297-2305 (2003).
15. D. Baechi, J. Dual, R. Buser, “A high Density Microchannel Network with Integrated Valves and Photodiodes,” Proceeding of IEEE MicroElectroMechanical Systems Workshop (MEMS’01), pp. 463-6, Interlaken, Switzerland, Jan. 21-25, 2001.
16. M. A. R. Koehl, J. R. Koseff, J. P. Crimaldi, M. G. McCay, T. Cooper, M. B. Wiley, P. A. Moore, “Lobster Sniffing: Antennule Design and Hydrodynamic Filtering of Information in an Odor Plume,” Science, 294, 1948-51 (2001).
17. http://iserver.saddleback.edu/faculty/janderson/lobster.jpg
18. J. Goldman, Duke University, Oxford University Express
19. Y.-C. Lin, C.-M. Jen, M.-Y. Huang, C.-Y. Wu, Xi-Zhang, “Electroporation Microchips for Continuous Gene Transfection,” Sensor and Actuator B, 79, 137-43 (2001).
20. C. Chang, “Novel Lobster Antennules-Like Micro-Fingers for the Manipulation of Biology Objects,” MS. Thesis, Department of PME, NTHU, 2003.
21. R. Legtenberg, J. Gilbert, S. D. Senturia, M. Elwenspoek, “Electrostatic Curved Electrode Actuators,” Journal of MicroElectrodeMechnical Systems, 6, 257-65 (1997).
22. T. Ono, D. Y. Sim, M. Esashi, “Micro-Discharge and Electric Breakdown in a Micro-Gap,” Journal of Micromechanics and Microengineering, 10, 445-51 (2001).
23. C. Loudon, B. A. Best, M. A. R. Koehl, “When Does Motion Relative to Neighboring Surfaces Alter the Flow through an Array of Hairs?” Journal of Experimental Biology, 193, 233-54 (1994).
24. C.-D. Lee and C.-H. Liu, “Design of Biology Objects Manipulation Device,” NSC 92-2815-C-007-034-E, National Science Council project report, Department of PME, NTHU, 2004.
25. C. Chang, C.-F. Chiang, C.-H. Liu, C.-H. Liu, “A Lobster-Sniffing-Inspired Method for Micro-Objects Manipulation Using Electrostatic Micro-Actuators,” Journal of Micromechanics and Microengineering, 15, 812-21 (2005).
26. K. R. Zavadil, M. A. Rising and P. C. Galambos, “Limits of Electro-Chemical Processes at Si Electrodes Used at High Field for Aqueous Microfluidic MEMS Applications,” Proceedings of Electrochemical Society Microfabricated Systems and MEMS VI, Series PV2002-6, pp. 144-52, Pennington, NJ, USA, 2002.
27. T. L. Sounart, T. A. Michalske and K. R. Zavadil, “Frequency-Dependent Electrostatic Actuation in Microfluidic MEMS,” Journal of MicroElectro- Mechanical Systems, 14, 125-33 (2005).
28. A. W. Adamson and A. P. Gast, “Physical Chemistry of Surfaces,” pp. 169-79, John Wiley & Sons, New York, 1997.
29. M. W. Judy, Y.–H. Cho, R. T. Howe, A. P. Pisano, “Self-Adjusting Microstructures (SAMS),” Proceedings of IEEE MicroElectroMechanical Systems Workshop (MEMS’91), pp.51-56, Nara, Japan, Jan. 30-Feb. 2, 1991.
30. C.-F. Chiang, C.-H. Liu, C. Chang, C.-H. Liu, “A Lobster-Sniffing Inspired Actuator for Manipulation of Micro-Objects via Controlling Local Fluid,” International Conference on Solid-State Sensors, Actuators and Microsystems, Transducers '05, pp. 348-51, Seoul, Korea, June 5-9, 2005.
31. F. M. White, “Fluid Mechanics,” pp. 24, McGraw-Hill, New York, 1994.
32. R. L. Burden and J. D. Faires, “Numerical Analysis,” pp. 220-6, Brooks/Cole, Pacific Grove, CA, 2001.