研究生: |
陳逸中 Chen, Yi-Chung |
---|---|
論文名稱: |
以氮化鋯及氮化鈮為質子交換膜燃料電池觸媒載體之製備及其性能研究 Fabrication of ZrN and NbN as Catalyst Support and Their Application in Proton Exchange Membrane Fuel Cell |
指導教授: |
彭宗平
Perng, Tsong-Pyng |
口試委員: |
葉君棣
Yeh, Chuin-Tih 鍾淑茹 Chung, Shu-Ru |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 120 |
中文關鍵詞: | 氮化鋯 、氮化鈮 、白金觸媒 、質子交換膜燃料電池 |
外文關鍵詞: | zirconium nitride, niobium nitride, Pt catalyst, proton exchange membrane fuel cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
近年來,質子交換膜燃料電池(PEMFC)的研究已經吸引越來越多的注意,質子交換膜燃料電池不僅擁有相當高的使用效率,且因其反應產物只有液態水,與傳統燃燒化石燃料會產生溫室氣體相比,是較為環保且可再生的能源。目前商用催化層材料是以碳黑搭載白金觸媒。但碳黑在PEMFC的操作條件下會腐蝕且產生一氧化碳,使得白金顆粒掉落以及對白金產生毒化效應,不僅使白金使用效率降低,更使電池的效能隨操作時間而降低。
本論文係選用氮化鋯(ZrN)及氮化鈮(NbN)取代碳黑作為載體,以利用這兩種過渡金屬氮化物良好的導電性及抗腐蝕性來提升電池的效能。氮化鋯及氮化鈮分別由溶膠凝膠法製備的氧化鋯(ZrO2)及商用氧化鈮(Nb2O5),透過高溫氮化合成。氮化鋯及氮化鈮經分析顯示,皆為無微孔的結構,且比表面積都相當低。白金奈米顆粒是由化學還原法合成於載體上,以四氯化鉑為前驅物及硼氫化納為還原劑,分別製備重量百分比20, 10, 5 wt%的白金於ZrN及NbN上。由SEM觀察,ZrN (Pt@ZrN)及NbN (Pt@NbN)上的白金顆粒大小分別為3-6 nm及4-10 nm,顆粒的分布非常均勻且密集。
白金在ZrN及NbN上的電化學活性由循環伏安法(cyclic voltammetry, CV)及氧還原反應(oxygen reduction reaction, ORR)來鑑定,並與商用材的Etek (Pt@C, 20 wt% Pt)來比較,在三種試片中,Etek的電化學表面積(electrochemical surface area, ECSA)及質量活性(mass activity, MA)皆為最高,而Pt@ZrN的此兩數值皆為最低,由SEM發現,經過超音波震盪之後,ZrN上的白金會掉落,導致量測的ECSA值及MA值降低。
電池的效率測試是以Pt@ZrN或Pt@NbN為催化層材料製作電極,並與商用電極Etek (Pt@XC-72, 0.5 mg /cm2 Pt)電極組成全電池(Pt@ZrN/Etek, Pt@NbN/Etek),以單電池測試平台測試其效能,並與以商用電極製成的全電池(Etek/Etek)進行比較。Pt@ZrN電極在陽極或陰極端的效率都非常低,白金密度0.5 mg /cm2的電極,在陽極與陰極端的最大功率密度分別只有193 及 11 mW/cm2。此外,陽極端的效率會隨測試循環數的增加而遞減。而在Pt@NbN電極方面,白金密度0.5 mg/cm2的電極在陽極端的表現與Etek相近,最大功率密度可到376 mW/cm2,但隨著白金密度的下降,電池的表現也隨之大幅降低。而Pt@NbN電極作為陰極端的效率則非常的差,白金密度0.5 mg/cm2的電極最大功率密度僅有38 mW/cm2。
為提高催化層的質傳能力,將碳黑(Vulcan® XC-72)與Pt@ZrN或Pt@NbN粉末以40 wt%的比例混合(40 wt% XC-72, 60 wt% Pt@ZrN或Pt@NbN),並製備成電極,以Pt@ZrN-C及Pt@NbN-C製備的電極,在電池的表現上都有顯著的成長。Pt@ZrN-C電極在陽極端的效率隨測試循環數上升而下降的現象消失,且白金密度0.5 mg/cm2的電極最大功率密度可達444 mW/cm2,高於Etek電極的表現(420 mW/cm2) 。陰極端的表現上也有顯著的提升,最大功率密度可達348 mW/cm2。而以Pt@NbN-C電極作為陽極,白金密度0.5 mg/cm2的電極其最大功率密度可達406 mW/cm2,在陰極方面,最大功率密度為266 mW/cm2。
Abstract
In recent decades, there has been an increasing interest in the study of proton exchange membrane fuel cell (PEMFC) because it is a clean and efficient energy. Platinum and carbon black are the most common materials as catalyst and catalyst support, respectively. However, carbon might suffer corrosion problem under the operation environment of PEMFC, leading to the degradation of performance as time goes by.
In this study, zirconium nitride (ZrN) and niobium nitride (NbN) were chosen as candidates for catalyst support because of their good electrical conductivity and corrosion resistance. ZrN and NbN were successfully fabricated by thermal nitridation. Platinum was deposited on ZrN or NbN with 20, 10, and 5 wt% by wet chemical method with NaBH4 as a reducing agent. The dispersions of Pt nanoparticles on ZrN and NbN were very high and uniform. The particle sizes of Pt on ZrN and NbN were 3-6 and 4-10 nm, respectively. The values of electrochemical surface area (ECSA) and mass activity (MA) of Pt@ZrN, Pt@NbN, and Etek were determined by cyclic voltammetry (CV) and oxygen reduction reaction (ORR), respectively. Etek showed the highest values of ECSA and MA, while Pt@ZrN showed the lowest. It was observed that Pt nanoparticles were detached from the surface of ZrN during the preparation of ink, which made it poor electrochemical characteristics.
The performances of MEA were evaluated by testing the cell which was prepared by Pt@ZrN or Pt@NbN electrode and Etek electrode (Pt@ZrN/Etek, Pt@NbN/Etek). The cell prepared by both Etek electrodes (Pt@XC-72, 0.5 mg/cm2 Pt) was tested as a standard. The maximum power densities by using Pt@ZrN electrode as the anode or cathode with 0.5 mg/cm2 Pt loading were 193 and 11 mW/cm2, respectively. The maximum power densities by using Pt@NbN electrode as the anode and cathode were 376 and 38 mW/cm2, respectively. After mixing with 40 wt% carbon black (Vulcan® XC-72), the maximum value of power density increased to 444 mW/cm2 by using Pt@ZrN-C electrode as the anode, which was better than that of Etek electrode (420 mW/cm2). On the cathode, the maximum power density was 348 mW/cm2. The maximum values of power density by using Pt@NbN-C electrode as the anode or the cathode increased to 406 and 266 mW/cm2, respectively.
References
1. G. Hoogers, Fuel Cell Technology Handbook, CRC Press (2003).
2. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, “Carbon support oxidation in PEM fuel cell cathodes,” J. Power Sources, 176 (2008) 444–451.
3. B. Avasarala, R. Moore, and P. Haldar, “Surface oxidation of carbon supports due to potential cycling under PEM fuel cell conditions,” Electrochim. Acta, 55 (2010) 4765–4771.
4. Y. Shao, G. Yin, and Y. Gao, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell,” J. Power Sources, 171 (2007) 558–566.
5. D. H. Youn, G. Bae, S. Han, J. Y. Kim, J.-W. Jang, H. Park, S. H. Choi, and J. S. Lee, “A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction: TiN on a CNT–graphene hybrid support,” J. Mater. Chem. A, 1 (2013) 8007–8015.
6. R. Kumar, S. Pasupathi, B. G. Pollet, and K. Scott, “Nafion-stabilized platinum nanoparticles supported on titanium nitride: An efficient and durable electrocatalyst for phosphoric acid based polymer electrolyte fuel cells,” Electrochim. Acta, 109 (2013) 365–369.
7. J. Chen, K. Takanabe, R. Ohnishi, D. Lu, S. Okada, H. Hatasawa, H. Morioka, M. Antonietti, J. Kubota, and K. Domen, “Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template,” Chem. Commun., 46 (2010) 7492–7494.
8. B. Avasarala, T. Murray, W. Li, and P. Haldar, “Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells,” J. Mater. Chem., 19 (2009) 1803–1805.
9. https://www1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2004/session1/2004_deer_fairbanks.pdf.
10. R. N. Castellano, Alternative Energy Technologies: Opportunities and Markets, Éditions des archives contemporaines (2012).
11. http://ase.kuas.edu.tw/green/info/solar/Introduction.pdf.
12. https://www.rogerebillings.com/hydrogen/.
13. http://www.fuelcelltoday.com/history
14. R. O’hayre, S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, 2nd ed., John Wiley and Sons (2009).
15. X. Li, Principles of Fuel Cells, Taylor & Francis (2006).
16. B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, 414 (2001) 345–352.
17. J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley and Sons (2000).
18. http://www.mpoweruk.com/hydrogen_fuel.htm
19. M. Yang, Z. Cui, and F. J. DiSalvo, “Mesoporous chromium nitride as a high performance non-carbon support for the oxygen reduction reaction,” Phys. Chem. Chem. Phys., 15 (2013) 7041–7044.
20. Z. Cui, M. Yang, and F. J. DiSalvo, “Mesoporous Ti0.5Cr0.5N supported PdAg nanoalloy as highly active and stable catalysts for the electro-oxidation of formic acid and methanol,” ACS Nano, 8 (2014) 6106–6113.
21. Z. Cui, R. G. Burns, and F. J. DiSalvo, “Mesoporous Ti0.5Nb0.5N ternary nitride as a novel noncarbon support for oxygen reduction reaction in acid and alkaline electrolytes,” Chem. Mater., 25 (2013) 3782–3784.
22. M. Yang, R. Guarecuco, and F. J. DiSalvo, “Mesoporous chromium nitride as high performance catalyst support for methanol electro-oxidation,” Chem. Mater., 25 (2013) 1783–1787.
23. W. Y. Ching, Y.-N. Xu, and L. Ouyang. “Electronic and dielectric properties of insulating Zr3N4,” Phys. Rev. B, 66 (2002) 235106 1–10.
24. M. Chhowalla and H. E. Unalan, “Thin films of hard cubic Zr3N4 stabilized by stress,” Nat. Mater., 4 (2005) 317–322.
25. S. Niyomsoan, W. Grant, D. L. Olson, and B. Mishra, “Variation of color in titanium and zirconium nitride decorative thin films,” Thin Solid Films, 415 (2002) 187–194.
26. W.-J. Chou, G.-P. Yu, and J.-H. Huang, “Corrosion resistance of ZrN films on AISI 304 stainless steel substrate,” Surf. Coat. Technol., 167 (2003) 59–67.
27. B. J. Tan, Y. Xiao, F. S. Galasso, and S. L. Suib, “Thermodynamic analysis and synthesis of zirconium nitride by thermal nitridation of sol-gel zirconium oxide,” Chem. Mater., 6 (1994) 918–926.
28. G. Brauer, “Nitrides, carbonitrides and oxynitrides of niobium,” J. Less-Common Metals, 2 (1960) 131–137.
29. R. Sanjinés, M. Benkahoul, C. S. Sandu, P. E. Schmid, and F. Lévy, “Electronic states and physical properties of hexagonal β-Nb2N and δ’-NbN nitrides,” Thin Solid Films, 494 (2006) 190–195.
30. I. Hotový, J. Huran, D. Búc, and R. Srnánek, “Thermal stability of NbN films deposited on GaAs substrates,” Vacuum, 50 (1998) 45–48.
31. K. Nomura and Y. Takasuka, “Preparation of NbN fibres by nitridation of sol-gel derived Nb2O5 fibres,” J. Mater. Sci. - Mater. Electron., 5 (1994) 53–58.
32. S. W. Robbins, P. A. Beaucage, H. Sai, K. W. Tan, J. G. Werner, J. P. Sethna, F. J. DiSalvo, S. M. Gruner, R. B. V. Dover, and U. Wiesner, “Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors,” Sci. Adv. , 2 (2016) e1501119 1–8.
33. Y. Li and L. Gao, “Synthesis and characterization of nanocrystalline niobium nitride powders,” J. Am. Ceram. Soc., 86 (2003) 1205–1207.
34. A. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface,” Renew. Sust. Energ. Rev., 13 (2009) 2430–2440.
35. https://moodle.umons.ac.be/pluginfile.php/5934/mod_resource/content/1/Fuel_cells_-_kinetics.pdf.
36. https://en.wikipedia.org/wiki/Butler%E2%80%93Volmer_equation.
37. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications,” ChemPhysChem, 1 (2000) 162–193.
38. Y. M. Chi, M.S. thesis, “Fabrication of platinum nanoparticles on titanium nitride macro/mesoporous structure by atomic layer deposition for proton exchange membrane fuel cell,” National Tsing Hua University (2015) 38.
39. V. Mehta and J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” J. Power Sources, 114 (2003) 32–53.
40. M. Rikukawa and K. Sanui, “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers,” Prog. Polym. Sci., 25 (2000) 1463–1502.
41. N. W. Deluca and Y. A. Elabd, “Polymer electrolyte membranes for the direct methanol fuel cell: a review,” J. Polym. Sci., Part B: Polym. Phys., 44 (2006) 2201–2225.
42. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, “Alternative polymer systems for proton exchange membranes (PEMs),” Chem. Rev., 104 (2004) 4587–4612.
43. A. Hermann, T. Chaudhuri, and P. Spagnol, “Bipolar plates for PEM fuel cells: A review,” Int. J. Hydrogen Energy, 30 (2005) 1297–1302.
44. O. T. Holton and J. W. Stevenson, “The role of platinum in proton exchange membrane fuel cells,” Platinum Met. Rev., 57 (2013) 259–271.
45. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-I. Kimijima, and N. Iwashita, “Scientific aspects of polymer electrolyte fuel cell durability and degradation,” Chem. Rev., 107 (2007) 3905–3951.
46. O. Deutschmann, H. Knözinger, K. Kochloefl, and T. Turek, “Heterogeneous catalysis and solid catalysts,” Heterogeneous Catalysis and Solid Catalysts, John Wiley and Sons (2009).
47. J. M. Jaksic, N. M. Ristic, N. V. Krstajic, and M. M. Jaksic, “Electrocatalysis for hydrogen electrode reactions in the light of fermi dynamics and structural bonding factors – I. individual electrocatalytic properties of transition metals,” Int. J. Hydrogen Energy, 23 (1998) 1121–1156.
48. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, and H. Jónsson, “Origin of the overpotential for oxygen reduction at a fuel-cell cathode,” J. Phys. Chem. B, 108 (2004) 17886–17892.
49. E. S. Steigerwalt, G. A. Deluga, D. E. Cliffel, and C. M. Lukehart, “A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst,” J. Phys. Chem. B, 105 (2001) 8097–8101.
50. C. C. Chien and K. T. Jeng, “Effective preparation of carbon nanotube-supported Pt–Ru electrocatalysts,” Mater. Chem. Phys., 99 (2006) 80–87.
51. S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair, and J. W. Elam, “Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition,” Nano Lett., 10 (2010) 3047–3051.
52. B. C. Beard and P. N. Ross, “The structure and activity of Pt‐Co alloys as oxygen reduction electrocatalysts,” J. Electrochem. Soc., 137 (1990) 3368–3374.
53. Q. Huang, H. Yang, Y. Tang, T. Lu, and D. L. Akins, “Carbon-supported Pt–Co alloy nanoparticles for oxygen reduction reaction,” Electrochem. Commun., 8 (2006) 1220–1224.
54. P. Yu, M. Pemberton, and P. Plasse, “PtCo/C cathode catalyst for improved durability in PEMFCs,” J. Power Sources, 144 (2005) 11–20.
55. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin, “Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction,” J. Phys. Chem. C, 111 (2007) 5605–5617.
56. F. Kadirgan, S. Beyhan, and T. Atilan, “Preparation and characterization of nano-sized Pt–Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation,” Int. J. Hydrogen Energy, 34 (2009) 4312–4320.
57. B. Moreno, E. Chinarro, J. C. Pérez, and J. R. Jurado, “Combustion synthesis and electrochemical characterization of Pt–Ru–Ni anode electrocatalyst for PEMFC,” Appl. Catal., B, 76 (2007) 368–374.
58. J. Luo, L. Wang, D. Mott, P. N. Njoki, N. Kariuki, C. J. Zhong, and T. He, “Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity,” J. Mater. Chem., 16 (2006) 1665–1673.
59. M. Shao, A. Peles, and K. Shoemaker, “Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity,” Nano Lett., 11(2011) 3714–3719.
60. A. Esmaeilifar, S. Rowshanzamir, M. H. Eikani, and E. Ghazanfari, “Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems,” Energy, 35 (2010) 3941–3957.
61. B. L. Gratiet, H. Remita, G. Picq, and M. O. Delcourt, “CO-stabilized supported pt catalysts for fuel cells: radiolytic synthesis,” J. Catal., 164 (1996) 36–43.
62. G. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production,” Nature, 393 (1998) 346–349.
63. G. Chen, D. A. Delafuente, S. Sarangapani, and T. E. Mallouk, “Combinatorial discovery of bifunctional oxygen reduction—water oxidation electrocatalysts for regenerative fuel cells,” Catal. Today, 60 (2001) 341–355.
64. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, and Q. Xin, “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell,” Chem. Commun.,13 (2003) 394–395.
65. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, and Q. Xin, “Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells,” J. Phys. Chem. B, 107 (2003) 6292–6299.
66. S. Sharma and B. G. Pollet, “Support materials for PEMFC and DMFC electrocatalysts—A review,” J. Power Sources, 208 (2012) 96–119.
67. E. Antolini, “Carbon supports for low-temperature fuel cell catalysts,” Appl. Catal., B, 88 (2009) 1–24.
68. N. Jhaa, A. L. M. Reddy, M. M. Shaijumona, N. Rajalakshmib, and S. Ramaprabhua,“Pt–Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell,” Int. J. Hydrogen Energy, 33 (2008) 427–433.
69. Z. Tanga, C. K. Poh, K. K. Leec, Z. Tianb, D. H. C. Chuaa, and J. Linb, “Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells,” J. Power Sources, 195 (2010) 155–159.
70. L. Gana, R. Lv, H. Dub, B. Li, and F. Kanga, “High loading of Pt–Ru nanocatalysts by pentagon defects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells,” Electrochem. Commun., 11 (2009) 355–358.
71. W. Li, M. Waje, Z. Chen, P. Larsen, and Y. Yan, “Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell,” Carbon, 48 (2010) 995–1003.
72. D. Sebastiána, J. C. Calderón , J. A. González-Expósito, E. Pastor, M.V. Martínez-Huerta, I. Suelves, R. Moliner , and M.J. Lázaro, “Influence of carbon nanofiber properties as electrocatalyst support on the electrochemical performance for PEM fuel cells,” Int. J. Hydrogen Energy, 35 (2010) 9934–9942.
73. S. Liua, J. Wanga, J. Zeng, J. Oua, Z. Lia, X. Liua, and S. Yanga, ““Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property,” J. Power Sources, 195 (2010) 4628–4633.
74. L. Qu, Y. Liu, J.-B. Baek, and L. Dai, “Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells,” ACS Nano, 4 (2010) 1321–1326.
75. X. Lu, J. Hub, J. S. Foord, and Q. Wanga, “Electrochemical deposition of Pt–Ru On diamond electrodes for the electrooxidation of methanol,” J. Electroanal. Chem., 654 (2011) 38–43.
76. G. R. Salazar-Banda, H. B. Suffredini, M. L. Calegaro, S. T. Tanimoto, and L. A. Avaca, “Sol–gel-modified boron-doped diamond surfaces for methanol and ethanol electro-oxidation in acid medium,” J. Power Sources, 162 (2006) 9–20.
77. H. Chhina, S. Campbell, and O. Kesler, “An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells,” J. Power Sources, 161(2006) 893–900.
78. S.-Y. Huang, P. Ganesan, and B. N. Popov, “Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell,” Appl. Catal., B, 102 (2011) 71–77.
79. M. Wang, D.-j. Guo, and H.-l. Li, “High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation,” J. Solid State Chem., 178 (2005) 1996–2000.
80. R. Ganesan and J. S. Lee, “An electrocatalyst for methanol oxidation based on tungsten trioxide microspheres and platinum,” J. Power Sources, 157 (2006) 217–221.
81. B. Seger, A. Kongkanand, K. Vinodgopal, and P. V. Kamat, “Platinum dispersed on silica nanoparticle as electrocatalyst for PEM fuel cell,” J. Electroanal. Chem., 621(2008) 198–204.
82. K. Y. Koo, U. H. Jung, W. L. Yoon, “A highly dispersed Pt/γ-Al2O3 catalyst prepared via deposition-precipitation method for preferential CO oxidation,” Int. J. Hydrogen Energy, 39 (2014) 5696–5703.
83. T. Okanishi, T. Matsui, T. Takeguchi, R. Kikuchi, and K. Eguchi, “Chemical interaction between Pt and SnO2 and influence on adsorptive properties of carbon monoxide,” Appl. Catal., A, 298 (2006) 181–187.
84. M. Michel, F. Ettingshausen, F. Scheiba, A. Wolz, and C. Roth, “Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes,” Phys. Chem. Chem. Phys., 10 (2008) 3796–3801.
85. G. Cuia, P. K. Shen, H. Mengb, J. Zhaoc, and G. Wu, “Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation,” J. Power Sources, 196 (2011) 6125–6130.
86. B. S. Ghanem, K. J. Msayib, N. B. McKeown, K. D. M. Harris, Z. Pan, P. M. Budd, A. Butler, J. Selbie, D. Book, and A. Walton, “A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption,” Chem. Commun., 0 (2008) 67–69.
87. B. Avasarala and P. Haldar, “On the stability of TiN-based electrocatalysts for fuel cell applications,” Int. J. Hydrogen Energy, 36 (2011) 3965–3974.
88. Y.-X. Li, Z.-D. Wei, Q.-L. Zhao, W. Ding, Q. Zhang, and S.-G. Chen, “Preparation of Pt/Graphene Catalyst and Its Catalytic Performance for Oxygen Reduction,” Acta Phys.⁃Chim. Sin., 27 (2011) 858–862.
89. M. Lerch, “Phase relationships in the ZrO2-Zr3N4 system,” J. Mater. Sci. Lett., 17 (1998) 441–443.
90. N. Muthuswamy, J. L. Gomez de la Fuente, P. Ochal, R. Giri, S. Raaen, S. Sunde, M. Rønninga, and D. Chen, “Towards a highly-efficient fuel-cell catalyst : optimization of Pt particle size, supports and surface-oxygen group concentration,” Phys. Chem. Chem. Phys.,15 (2013) 3803–3813.