研究生: |
汪彥呈 Wang, Yan Cheng |
---|---|
論文名稱: |
使用粒子濾波器之多輸入多輸出毫米波系統混合波束追蹤 Hybrid Beam Tracking for Millimeter Wave MIMO Systems Using Particle Filter |
指導教授: |
黃元豪
Huang, Yuan Hao |
口試委員: |
蔡佩芸
Tsai, Pei Yun 陳喬恩 Chen, Chiao En 賴以威 Lai, I Wei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 多輸入多輸出天線系統 、波束集成 、預編碼 、毫米波通訊 、粒子濾波器 |
外文關鍵詞: | MIMO, beamforming, precoding, millimeter-wave communication, particle filter |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著新技術與應用的提出,現行通訊系統所使用的頻譜逐漸無法滿足人們對於資料傳輸速率的需求。因此,毫米波頻段大量未使用的頻寬使毫米波通訊成為下一世代通訊系統的潛力新星。同時,利用毫米波訊號短波長的特性,大型天線陣列搭配預編碼技術可以用來克服訊號衰減嚴重的問題。考量到射頻電路的高硬體複雜度,傳統全數位的預編碼方式並不適用於毫米波多輸出多輸入通訊系統,於是混合射頻/基頻預編碼被提出以減少射頻電路的數量,並被視為是毫米波通訊的關鍵技術之一。
本研究利用通道在時間上的連續性,提出一個基於粒子濾波器的波束追蹤演算法幫助解決在混合預編碼架構中的基底選擇問題。相比於現有文獻,我們藉由修改後的混合粒子濾波器放大機率分布中弱小的成分,搭配類似於多輸入多輸出系統中連續干擾消除偵測器概念的估計產生方式,省略了在基底選擇部分所需要的矩陣運算。此外,我們使用了簡化的重取樣演算法以提升運算平行度,並且修改使其適用於混合粒子濾波器的架構。在16x16一維線性天線陣列多輸入多輸出系統的毫米波通道環境中,模擬結果顯示本研究提出的演算法相比於現有文獻之演算法可以降低約40%的運算複雜度,並僅伴隨著些微的位元錯誤率損失,而在頻譜效率上則可以達到幾乎一樣的表現。
Transmission through the millimeter wave has been considered as one of the potential options for the next-generation wireless communication.
By exploiting the property of small wavelength of the millimeter wave signal,
the multiple-input multiple-output along with the precoding technology can be applied to overcome the critical problem of signal attenuation.
Moreover, the hybrid precoding architecture is included to reduce the hardware cost.
This study considers the correlation between temporally neighboring channels
and adopts the famous sequential Monte Carlo method known as particle filter to track the evolution of channels.
By including the modified mixture framework along with a novel output estimation method,
a beam-tracking algorithm is proposed to solve the basis selection problem in the hybrid precoding architecture.
Based on the commonly used extended S-V channel model,
the simulations under the 16x16 mmWave MIMO system indicates that the proposed algorithm can reduce the computational complexity
with negligible performance loss comparing to previous works.
[1] S. K. Yong and C.-C. Chong, "An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges," EURASIP Journal on Wireless Communications and Networking, vol. 2007, no. 1, pp. 1-10, 2006.
[2] O. E. Ayach, R. W. Heath, S. Abu-Surra, S. Rajagopal, and Z. Pi, "Low complexity precoding for large millimeter wave mimo systems," in 2012 IEEE International Conference on Communications (ICC), June 2012, pp. 3724-3729.
[3] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F. Bugallo, and J. Miguez, "Particle filtering," IEEE Signal Processing Magazine, vol. 20, no. 5, pp. 19-38, Sep 2003.
[4] J. Vermaak, A. Doucet, and P. Perez, "Maintaining multimodality through mixture tracking," in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, Oct 2003, pp. 1110-1116 vol.2.
[5] B. Risfic, S. Arulampalam, and N. Gordon, "Beyond the kalman filter," IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 7, pp. 37-38, July 2004.
[6] T. Li, M. Bolic, and P. M. Djuric, "Resampling methods for particle filtering: Classification, implementation, and strategies," IEEE Signal Processing Magazine, vol. 32, no. 3, pp. 70-86, May 2015.
[7] Y. Y. Lee, C. H. Wang, and Y. H. Huang, "A hybrid rf/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave mimo systems," IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 305-317, Jan 2015.
[8] A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, "Hybrid precoding for millimeter wave cellular systems with partial channel knowledge," in Information Theory and Applications Workshop (ITA), 2013, Feb 2013, pp. 1-5.
[9] A. A. M. Saleh and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128-137, February 1987.
[10] J. He, T. Kim, H. Ghauch, K. Liu, and G. Wang, "Millimeter wave mimo channel tracking systems," in 2014 IEEE Globecom Workshops (GC Wkshps), Dec 2014, pp. 416-421.
[11] J. G. Proakis, Digital Communications. McGraw Hill, 2000.
[12] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/non-gaussian bayesian state estimation," IEE Proceedings F - Radar and Signal Processing, vol. 140, no. 2, pp. 107-113, April 1993.
[13] K. Huber and Simon Haykin, "Application of particle filters to MIMO wireless Communications," ICC 2003, IEEE International Canference on. Commmunications, vol. 26, no. 1, May 2003, pp. 2311-2315.
[14] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe, "A boosted particle filter: Multitarget detection and tracking," in European Conference on Computer Vision. Springer, 2004, pp. 28-39.
[15] S.-H. Hong, Z.-G. Shi, J.-M. Chen, and K.-S. Chen, "A low-power memory-efficient resampling architecture for particle filters," Circuits, Systems and Signal Processing, vol. 29, no. 1, pp. 155-167, 2010.
[16] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter wave channel modeling and cellular capacity evaluation," IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164-1179, June 2014.
[17] M. Marcus and B. Pattan, "Millimeter wave propagation; spectrum management implications," IEEE Microwave Magazine, vol. 6, no. 2, pp. 54-62, June 2005.