研究生: |
李浩旻 Lee, How-Min |
---|---|
論文名稱: |
以耗散粒子動力學模擬高分子在剪切流動下對形態變化之影響 Shear-Induced Morphological Changes on Polymer via Dissipative Particle Dynamics Simulations |
指導教授: |
張榮語
Chang, Rong-Yu |
口試委員: |
吳建興教授
黃世欣教授 陳夏宗教授 許嘉翔博士 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 耗散粒子動力學 、高分子 、剪切流場 、SLLOD演算法 、形態變化 |
外文關鍵詞: | Dissipative Particle Dynamics, Polymer, Shear flows, SLLOD algorithm, Morphology changes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過去,耗散粒子動力學 (Dissipative Particle Dynamics, DPD)已經很成功地模擬在高分子的相態(Phase)與形態(Morphology)的變化。到目前為止,高分子在剪切流場(Shear Flow)下,還是比較少討論,然而,其原因在於DPD模擬在剪切流場上的應用還沒有被注意。SLLOD演算法已經在傳統的分子動力學模擬(Molecular Dynamics Simulations, MD)上,已經很廣泛地被用來呈現剪切與拉伸流場(Shear and Elongation Flows),因此,本研究的目的透過耗散粒子動力學模擬,瞭解高分子在剪切流場下,其形態變化,更重要地,對在平衡態下的形態,比較兩者之間的差異性。
本研究使用雙嵌段共聚物(Diblock Copolymer)在不同剪切率(Shear Rate)下計算其黏度(Viscosity)與順向性(Orientation),發現當剪切率越大其黏度則會遞減,而鏈段則是會趨近於某個方向。在形態變化方面,發現剪切流場可將其形態誘導成水平分層並留有在平衡態下的結構,因此本研究發現可利用剪切流場將形態誘導成某一方向以提高其應用價值。
In the past, Dissipative Particle Dynamics (DPD) has successfully simulated the changes in phase and morphology of polymers. However, the topic of polymer under shear flow has not been studied much up until this point because of the fact that the application of DPD simulation under shear flow has not garnered much attention thus far. Sllod algorithm is used very commonly in the traditional Molecular Dynamics Simulations (MD) to represent shear and elongation flows. Therefore, the objective of this research is to understand the phase change of polymer under shear flow using DPD. And most importantly, compare the differences between the two under equilibrium condition.
In this research, the viscosity and alignment of diblock copolymer are determined under different shear rates. The results are that the viscosity decreases with increasing shear rates and the polymer chains tend to align to a certain direction. For changes in morphology, it is found that shear flow can induce horizontal stratification and maintain equilibrium structure of polymer. Therefore, the application of shear flow can induce the morphology of polymer into a certain alignment which can lead to a wider application of polymer.
[1] 曾信榮 和 許千樹, "發光二極體.," 科學發展 451, 32 (2010).
[2] "Http://Tw.Myblog.Yahoo.Com/Foliyoco-12657121."
[3] 楊素華 和 蔡泰成, "太陽能電池.," 科學發展 390, 51 (2005).
[4] Z. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, and T. P. Lodge, "Multicompartment Micelles from Abc Miktoarm Stars in Water.," Science 306, 98 (2004).
[5] D. H. Lee, D. O. Shin, W. J. Lee, and S. O. Kim, "Hierarchically Organized Carbon Nanotube Arrays from Self-Assembled Block Copolymer Nanotemplates.," Adv. Mater. 20, 2480 (2008).
[6] P. J. Hoogerbrugge and J. M. V. A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics.," Europhys. Lett. 19(3), 155 (1992).
[7] R. D. Groot and P. B. Warren, "Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation.," J. Chem. Phys. 107(11), 4423 (1997).
[8] 鄢立傑, "耗散粒子動力學模擬帶支鏈官能基團高分子與線性高分子共混系統之相態衍變.," 國立清華大學化工所碩士論文 (2010).
[9] 王耀群, "以分子動力學結合耗散粒子動力學法觀察不同比例pe與plla高分子混合後之奈米結構.," 國立中山大學機械與機電工程學系碩士論文 (2007).
[10] K. Zhang and C. W. Manke, "Simulation of Diblock Copolymer Melts by Dissipative Particle Dynamics.," Comput. Phys. Commun. 129, 275 (2000).
[11] P. Espanol and P. Warren, "Statistical Mechanics of Dissipative Particle Dynamics.," Europhys. Lett. 30(4), 191 (1995).
[12] M. Rubinstein and R. H. COLBY, "Polymer Physics.," (2003).
[13] D. J. Evans, G. P. Morriss, and L. M. Hood, "On the Number Dependence of Viscosity in Three Dimensional Fluids.," Mol. Phys. 68(3), 637 (1989).
[14] D. J. Evans and G. P. Morriss, "Application of Transient Correlation Functions to Shear Flow Far from Equilibrium.," Phys. Rev. A. 35(2), 792 (1987).
[15] A. W. Lees and S. F. Edwards, "The Computer Study of Transport Processes under Extreme Conditions.," J. Phys. C : SOLID STATE PHYS. 5, 1921 (1972).
[16] D. Liu and C. Zhong, "Dissipative Particle Dynamics Simulation of Microphase Separation and Properties of Linear– Dendritic Diblock Copolymer Melts under Steady Shear Flow.," Macromol. Rapid. Comm. 26, 1960 (2005).
[17] Y. Cui, C. Zhong, and J. Xia, "Multicompartment Micellar Solutions in Shear:A Dissipative Particle Dynamics Study.," Macromol. Rapid. Comm. 27, 1437 (2006).
[18] A. Chatterjee, "Modification to Lees-Edwards Periodic Boundary Condition for Dissipative Particle Dynamics Simulation with High Dissipation Rates.," Mol. Simulat. 33(15), 1233 (2007).
[19] L. Y. You, L. J. Chen, H.-J. Qian, and Z. Y. Lu, "Microphase Transitions of Perforated Lamellae of Cyclic Diblock Copolymers under Steady Shear.," Macromolecules 40, 5222 (2007).
[20] M. Lı´sal and J. K. Brennan, "Alignment of Lamellar Diblock Copolymer Phases under Shear: Insight from Dissipative Particle Dynamics Simulations.," Langmuir 23, 4809 (2007).
[21] H. C. Tseng, R. Y. Chang, and J. S. Wu, "Shear Thinning and Shear Dilatancy of Liquid N-Hexadecane Via Equilibrium and Nonequilibrium Molecular Dynamics Simulations: Temperature, Pressure, and Density Effects.," J. Chem. Phys. 129(1), 014502 (2008).
[22] R. D. Groot and T. J. Madden, "Dynamic Simulation of Diblock Copolymer Microphase Separation.," J. Chem. Phys. 108(20), 8713 (1998).
[23] H. C. Tseng, R. Y. Chang, and J. S. Wu, "Material Functions of Liquid N-Hexadecane under Steady Shear Via Nonequilibrium Molecular Dynamics Simulations: Temperature, Pressure, and Density Effects.," J. Chem. Phys. 130(8), 084904 (2009).
[24] H. C. Tseng, R. Y. Chang, and J. S. Wu, "Molecular Structural Property and Potential Energy Dependence on Nonequilibrium-Thermodynamic State Point of Liquid N-Hexadecane under Shear.," J. Chem. Phys. 134(4), 044511 (2011).
[25] E. S. Boek, P. V. Coveney, and H. N. W. Lekkerkerker, "Computer Simulation of Rheological Phenomena in Dense Colloidal Suspensions with Dissipative Particle Dynamics.," J. Phys. : Condens. Matter, 9509 (1996).
[26] S. R. Rastogi and N. J. Wagner, "A Parallel Algorithm for Lees-Edwards Boundary Conditions.," Parallel Comput. 22, 895 (1996).
[27] R. D. Groot, "Mesoscopic Simulation of Polymer-Surfactant Aggregation.," Langmuir 16, 7493 (2000).
[28] C. M. Wijmans and B. Smit, "Simulating Tethered Polymer Layers in Shear Flow with the Dissipative Particle Dynamics Technique.," Macromolecules 35, 7138 (2002).
[29] R. D. Groot, "Electrostatic Interactions in Dissipative Particle Dynamics—Simulation of Polyelectrolytes and Anionic Surfactants.," J. Chem. Phys. 118(24), 11265 (2003).
[30] D. D. Hong, N. P. Thien, and X. J. Fan, "An Implementation of No-Slip Boundary Condition in Dpd.," Comput. Mech. 35, 24 (2004).
[31] A. F. Jakobsen, O. G. Mouritsen, and G. Besold, "Artifacts in Dynamical Simulations of Coarse-Grained Model Lipid Bilayers.," J. Chem. Phys. 122, 204901 (2005).
[32] E. E. Keaveny, I. V. Pivkin, M. Maxey, and G. E. Karniadakis, "A Comparative Study between Dissipative Particle Dynamics and Molecular Dynamics for Simple- and Complex-Geometry Flows.," J. Chem. Phys. 123(10), 104107 (2005).
[33] C. Ibergay, P. Malfreyt, and D. J. Tildesley, "Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes.," J. Chem. Theory. Comput. 5, 3245 (2009).
[34] H. C. Tseng, J. S. Wu, and R. Y. Chang, "Master Curves and Radial Distribution Functions for Shear Dilatancy of Liquid N-Hexadecane Via Nonequilibrium Molecular Dynamics Simulations.," J. Chem. Phys. 130(16), 1593 (2009).
[35] D. D. Hong, N. P. Thien, K. S. Yeo, and G. Ausias, "Dissipative Particle Dynamics Simulations for Fibre Suspensions in Newtonian and Viscoelastic Fluids.," Comput. Method. Appl. M. 199, 1593 (2010).
[36] Y. Liu, Y. An, H. Yan, C. Guan, and W. Yang, "Influences of Three Kinds of Springs on the Retraction of a Polymer Ellipsoid in Dissipative Particle Dynamics Simulation.," J. Polym. Scl. Pol. Phys. 48, 2484 (2010).
[37] L. He, Z. Pan, L. Zhang, and H. Liangc, "Microphase Transitions of Block Copolymer/Nanorod Composites under Shear Flow.," Soft Matter 7, 1147 (2011).