研究生: |
廖子淳 Tzu-Chun Liao |
---|---|
論文名稱: |
利用表面電漿波(SPR)原理探測生物細胞 |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 表面電漿共振 、細胞 |
外文關鍵詞: | Surface Plasmon Resonance |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振(Surface Plasmon Resonance, SPR)現象,被發現已經有近一百年的歷史,而近幾年來,隨著生物醫學的發展,這項技述更是被廣泛的應用在生物檢測的範圍內,由於它對於不同折射率高靈敏度的特性,因此,常常被用來檢測生物體產生化學反應與否,目前,已有檢測抗體和抗原的商用儀器被研發出來。本文則是利用表面電漿共振的性質,期待利用它對折射率的高靈敏度特性,來鑑別不同種類的細胞,已達到快速的檢驗同在一種溶液中不同細胞種類的目的。
關於激發表面電漿共振現象的方式很多,包括了ATR(Attenuated Total Reflection)組態、利用光纖、光波導及光柵的方式,最先被利用的是ATR組態,而後三種方式,則是為了要改善系統的解析度或是為了縮小整個系統所做的設計。
本文主要是用一個較簡單的系統:在一個稜鏡上,放上ㄧ片已經鍍上50nm金膜的玻璃,再於金膜上放上待測物,也就是利用傳統的ATR組態做為本實驗的架構,本文先對於空氣(n=1.0)、水(n=1.33)、單一種類細胞三種物質作檢測,比較它們之間表面電漿共振現象的差異,並和C語言的模擬結果做比對, 目前已可以量測出單一種類細胞的細胞膜和空氣之間的差異,並可以辨識出是溶液產生的效應或是細胞產生的效應。
參考文獻
[1] 陳嘉芬 編著,“細胞生物學,” 藝軒出版社
[2] A. V. Kabashin, et al., “Surface plasmon resonance interferometer for bio- and chemical- sensors,” Opt. Comm., Vol. 150, pp5-8 (1998)
[3] K. Matsubara, et al., “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc., Vol. 42, pp1375 (1988)
[4] J. J. Cowan, et al., “Dispersion of surface plasmon in multiple metal and dielectric layers on concave diffraction gratings,” Phys. Stat. Sol., Vol. 1, pp695 (1988)
[5] A. Hanning, et al., ”Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sensors and Actuators B, Vol. 54, pp25-36 (1999)
[6] S. R. Karlsen, et al., ”Simultaneous determination of refractive index and absorbance spectra of chemical samples using surface plasmon resonance,” Sensors and Actuators B, Vol. 24-25, pp747-749 (1995)
[7] X. Caide, et al., ”Characterization of surface plasmon resonance biosensor,” Sensors and Actuators B, Vol. 66, pp174-177 (2000)
[8] G. Steiner, et al., “Surface plasmon resonance imaging of microstructured monolayers,” Journal of Molecular Structure, Vol. 509, pp265-273 (1999)
[9] J. Homola, et al., ”A novel mutichannel surface plasmon resonance biosensor,” Sensor and Actuators B, Vol. 76, pp403-410 (2001)
[10] C. P. Cahill, et al., “A surface plasmon resonance sensor probe based on retro-reflection,” Sensors and Actuators B, Vol. 45, pp161-166 (1997)
[11] J. Melendez, et al., “A commercial solution for surface plasmon sensoring,” Sensors and Actuators B, Vol. 35-36, pp212-216 (1996)
[12] R. D. Harris, et al., “Wavegiude surface plasmon resonance sensors,” Sensors and Actuators B, Vol. 29, pp261-267 (1995)
[13] A. J. C. Tubb, et al., “Single-mode optical fibre surface plasma wave chemical sensor,” Sensors and Actuators B, Vol. 41, pp71-79 (1997)
[14] R. W. Wood, “On remarkable case of uneven distribution of light in a diffraction grating spectrum,” Phil. Mag. ,Vol. 4, pp396-342 (1902)
[15] A. Otto, “Excitation of nonradiative surface plasma waves insilver by the method of frustrated total reflection,” Z. Phys., Vol. 216, pp398-410 (1968)
[16] E. Kretchmann, ”Die bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasaschwingungen,” Z. Phys., Vol. 241, pp313-324 (1971)
[17] E. Kretchmann, “ Die bestimmung der optischen Konstanten dunner Schichten in der Nahe der Plasmafrequenz aus Kurvenfeldern konstanter Transmission”, Z. Phys. Vol. 221, pp346-356 (1971)
[18] W.C. Kuo, et al., “Optical heterodyne surface-plasmon resonance biosensor,” Optics letters, Vol. 28, pp1329-1331 (2003)
[19] H. E. de Bruijn, et al., “Determination of dielectric permittivity and thickness of a metal layer from a surface plasmon resonance experiment,” A. Optics, Vol. 29, pp1974-1978 (1990)
[20] E. Hutter, et al., “Surface plasmon resonance method for probing interactions in nanostructures: CdS nanoparticles linked to Au and Ag substrates by self-assembled hexanedithiol and aminoethanethiol,” Journal of Applied Physics, Vol. 90, pp1977-1985 (2001)
[21] M. Yamamoto, “Surface Plasmon Resonance(SPR) Theory:Tutorial,” Review of Polarography, Vol. 48, pp209-236 (2002)
[22] C. Kittel. “Introduction to solid State Physics, 7th edition”, Wiley, New York (1996)
[23] J. S. Maier, et al., “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Optics Letters, Vol. 19, pp2062-2065 (1994)
[24] X. Wang, et al., “Liquid-crystal blazed-grating beam deflector,” Apply Phys. Lett., Vol. 50, pp6545-6555 (1987)
[25] Z. Salamon, et al., “Plasmon Resonance Studies of Agonist/Antagonist Binding to the Human d-Opioid Receptor: New Structural Insights into Receptor-Ligand Interactions,” Biophysical Journal, Vol. 79, pp2463–2474 (2000)
[26] M. N. Weiss, et al., “A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors,” Sensors and Actuators A, Vol. 51, pp211-217 (1996)
[27] Z. Salamon, et al., ”Plasmon resonance spectroscopy: probing molecular interactions within membranes,” TIBS 24 – JUNE 1999, pp213-219
[28] A. Hanning , et al., ”Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution,” Sensors and Actuators B, Vol. 54, pp25–36 (1999)
[29] R. Slavı´k, et al., ”Miniaturization of fiber optic surface plasmon resonance sensor,” Sensors and Actuators B, Vol. 51, pp311–315 (1998)
[30] T. Akimoto, et al., ” Estimation of sensitivity for refractive index and immunoreaction in a surface plasmon resonance sensor probe,” Analytica Chimica Acta, Vol. 417, pp125–131 (2000)
[31] R. Slavı´k , et al., “Single-mode optical fiber surface plasmon resonance sensor”, Sensors and Actuators B, Vol. 54, pp74–79 (1999)
[32] J. Homola , et al., “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sensors and Actuators B, Vol. 54, pp16-24 (1999)
[33] 陳光鑫等,”光電子學,” 全華出版社