簡易檢索 / 詳目顯示

研究生: 施秉辰
Ping-chen Shih
論文名稱: 1. 比較東岸和西岸台灣眼鏡蛇蛇毒的高分子蛋白組成 2. N-鍵結的醣化作用對於台灣眼鏡蛇的蛇毒金屬蛋白水解酵素之活性影響
1. Comparision of high molecular weight toxins between Eastern and Western Taiwan Cobra venom 2. The effect of N-linked glycosylation on snake venom metalloproteinase from Taiwan Cobra venom
指導教授: 吳文桂
Wen-guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 64
中文關鍵詞: 台灣眼鏡蛇N-鍵結的醣化作用蛇毒金屬蛋白水解酵素眼鏡蛇蛇毒因子
外文關鍵詞: Taiwan Cobra, N-linked glycosylation, snake venom metalloproteinase, cobra venom factor, binchen
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣東岸與西岸眼鏡蛇(Naja atra)除了外觀上與毒性上有差異,在心臟毒素同源蛋白的比例上也發現相當顯著的差別,由於目前對於高分子量的蛋白所知有限,因此本實驗針對東、西岸台灣眼鏡蛇蛇毒中含量較少的高分子量蛋白作比較與鑑定。實驗中主要利用快速蛋白液相層析儀及十二烷基磺酸鈉-聚丙烯醯胺膠電泳將高分子量的蛋白分離,再用基質輔助雷射脫附游離/飛行時間質譜儀比對大於20kD的高分子量蛋白,並比對出眼鏡蛇蛇毒因子、Kaouthiagin-like和Cobrin-like。定量分析結果發現東岸台灣眼鏡蛇的眼鏡蛇毒因子含量大於西岸台灣眼鏡蛇(約4.5%和1.5%),而Kaouthiagin-like和Cobrin-like在東、西岸台灣眼鏡蛇蛇毒的含量並無明顯差別。另外實驗中也發現三種高分子成分(眼鏡蛇蛇毒因子、Kaouthiagin-like和Cobrin-like)都具有N-鍵結的醣化修飾作用,其中Cobrin-like是一種蛇毒金屬蛋白水解酵素,結果顯示去醣化會使得Cobrin-like產生聚集的現象,導致失去酵素活性,無法分解纖維蛋白的α-鏈,因此醣化的修飾對於眼鏡蛇蛇毒中的蛇毒金屬蛋白水解酵素,必定扮演十分重要的角色。


    In addition to the differences of morphology and toxicity between Eastern and Western Taiwan Cobra (Naja atra), it has recently been shown that the concentration of CTXs from Eastern and Western are also significantly different. However, it is not known whether high molecular weight proteins in snake venom. In this study, we compare and identify high molecular weight protein (over 20kD) components of venoms between Eastern and Western Taiwan Cobra. Three high molecular weight components (CVF, Cobrin-like and Kaouthiagin-like)in snake venom were separated by FPLC followed by SDS-PAGE and identified by MALDI-TOF MS. Quantitative analysis showed that the Eastern Taiwan Cobra contains higher amount of CVF than the Western Taiwan Cobra (~4.5% and ~1.5%). However, there are no significant differences in Cobrin-like and Kaouthiagin-like. Three high molecular weight components (CVF, Cobrin-like and Kaouthiagin- like) are also found to be glycoprotein with N-linked glycosylation. Deglycosylation of Cobrin-like, a group of SVMP which hydrolyzes α-chain of fibrinogen, induce a protein aggregation and lose its enzyme activity. It was suggested that glycosylation might play an important role in regulating snake venom metalloproteinase activities of snake venom components.

    1. CTX:Cardiotoxin

    2. FPLC:Fast Protein Liquid Chromatography

    3. SDS-PAGE:Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

    4. MALDI-TOF MS:Matrix-Assisted Laser Desorption Ionization-Time of
    Flight Mass Spectrometry

    5. CVF:Cobra Venom Factor

    6. SVMP:Snake venom metalloproteinase

    第一章 緒論 1-1台灣眼鏡蛇在蝙蝠蛇科的分類------------------------------------1 1-2眼鏡蛇蛇毒蛋白成份簡介----------------------------------------3 1-3東岸和西岸台灣眼鏡蛇的差異-----------------------------------18 1-4鍵結於天門冬醯胺酸的醣化作用---------------------------------21 1-5研究目的-----------------------------------------------------24 第二章 實驗材料與方法 2-1台灣眼鏡蛇毒液來源與製備-------------------------------------25 2-2二維電泳-----------------------------------------------------27 2-3液相層析儀---------------------------------------------------28 2-4質譜儀-------------------------------------------------------30 2-5去醣化作用與酵素活性分析-------------------------------------31 第三章 實驗結果 3-1台灣眼鏡蛇蛇毒高分子量蛋白鑑定結果---------------------------32 3-2東岸和西岸台灣眼鏡蛇蛇毒組成之比較結果-----------------------37 3-3去醣化作用與蛇毒酵素活性分析之結果---------------------------43 第四章 討論 4-1台灣眼鏡蛇蛇毒蛋白的定量與鑑定之探討-------------------------48 4-2東岸和西岸台灣眼鏡蛇蛇毒蛋白組成之探討-----------------------50 4-3醣化作用對於蛇毒酵素活性影響之探討---------------------------51 參考文獻-----------------------------------------------------54

    1. Wuster, W. (1996) Taxonomic changes and toxinology: systematics revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34, 399-406

    2. Wuster, W., and Thorpe, R.S. (1991) Asiatic cobras: systematics and snakebite. Experientia. 47, 205-209

    3. Li, S., Wang, J., Zhang, X., Ren, Y., Wang, N., Zhao, K., Chen, X., Zhao, C., Li, X., Shao, J., Yin, J., West, M.B., Xu, N., and Liu, S. (2004) Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochem. J. 384, 119-127

    4. Fletcher, J.E., and Jiang M.S. (1998) LYS49 phospholipase A2 myotoxins lyse cell cultures by two distinct mechanisms. Toxicon 36, 1549-1555

    5. Lambeau, G., and Lazdunski, M. (1999) Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol. Sci. 20, 162-170

    6. Jeng, T.W., Hendon, R.A., and Fraenkel-Conrat, H. (1978) Search for relationships among the hemolytic, phospholipolytic, and neurotoxic activities of snake venoms. Proc. Natl. Acad. Sci. U. S. A. 75, 600-604

    7. Pan, F.M., Chang, W.C., and Chiou, S.H. (1994) cDNA and protein sequences coding for the precursor of phospholipase A2 from Taiwan cobra, Naja naja atra. Biochem. Mol. Biol. Int. 33, 187-194

    8. Bougis, P., Tessier, M., Van Rietschoten, J., Rochat, H., Faucon, J.F., and Dufourcq, J. (1983) Are interactions with phospholipids responsible for pharmacological activities of cardiotoxins? Mol. Cell Biochem. 55, 49-64

    9. Servent, D., Winckler-Dietrich, V., Hu, H.Y., Kessler, P., Drevet, P., Bertrand, D., and Menez, A. (1997) Only snake curaremimetic toxins with a fifth disulfide bond have high affinity for the neuronal alpha7 nicotinic receptor. J. Biol. Chem. 272, 24279-24286

    10. Yang, C.C., Yang, H.J., and Chiu, R.H. (1970) The position of disulfide bonds in cobrotoxin. Biochim. Biophys. Acta 214, 355-363

    11. Tsetlin, V. (1999) Snake venom alpha-neurotoxins and other “three- finger” proteins. Eur. J. Biochem. 264, 281-286

    12. Chang, L.S., Lin, S.R., and Yang, C.C. (2001) Refolding of Taiwan cobra neurotoxin: intramolecular cross-link affects its refolding reaction. Arch. Biochem. Biophys. 387, 289-296

    13. Sarkar, N.K. (1947) Isolation of cardiotoxin from cobra venom (Naja tripudians, monocellate variety). J. Ind. Chem. Soc. 24, 277-232

    14. Leung, W.W., Keung, W.M., and Kong, Y.C. (1976) The cytolytic effect of cobra cardiotoxin on Ehrlich ascites tumor cells and its inhibition by Ca2+. Naunyn. Schmiedebergs Arch. Pharmacol. 292, 193-198

    15. Sun, J.J., and Walker, M.J. (1986) Actions of cardiotoxins from the southern Chinese cobra (Naja naja atra) on rat cardiac tissue. Toxicon. 24, 233-245

    16. Efremov, R.G., Volynsky, P.E., Nolde, D.E., Dubovskii, P.V., and Arseniev, A.S. (2002) Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys. J. 83, 144-153

    17. Oda, T., Ohta, M., Inoue, S., Ikeda, K., Furukawa, S., and Hayashi, K. (1989) Amino acid sequence of nerve growth factor purified from the venom of the Formosan cobra Naja naja atra. Biochem. Int. 19, 909-917

    18. Emanueli, C., Salis, M.B., Pinna, A., Graiani, G., Manni, L., and Madeddu, P. (2002) Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs. Circulation 106, 2257-2262

    19. Bennett, G., al-Rashed, S., Hoult, J.R., and Brain, S.D. (1998) Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils. Pain 77, 315-322

    20. Jin, Y., Lu, Q., Zhou, X., Zhu, S., Li, R., Wang, W., and Xiong, Y. (2003) Purification and cloning of cysteine-rich proteins from Trimeresurus jerdonii and Naja atra venoms. Toxicon. 42, 539-547

    21. Yamazaki, Y., Hyodo, F., and Morita, T. (2003) Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch. Biochem. Biophys. 412, 133-141

    22. Chang, L.S., Liou, J.C., Lin, S.R., and Cheng, Y.C. (2005) Purification and characterization of Taiwan cobra venom proteins with weak toxicity. Toxicon. 45, 21-25

    23. Evans, H.J. (1981) Cleavage of the A alpha-chain of fibrinogen and the alpha- polymer of fibrin by the venom of spitting cobra (Naja nigricollis). Biochim. Biophys. Acta 660, 219-226

    24. Alexander, J.S., and Elrod, J.W. (2002) Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J. Anat. 200, 561-574

    25. Kini, R.M., and Evans, H.J. (1991) Inhibition of platelet aggregation by a fibrinogenase from Naja nigricollis venom is independent of fibrinogen degradation. Biochim. Biophys. Acta 1095, 117-121

    26. Shoibonov, B.B., Osipov, A.V., Kryukova, E.V., Zinchenko, A.A., Lakhtin, V.M., Tsetlin, V.I., and Utkin, Y.N. (2005) Oxiagin from the Naja oxiana cobra venom is the first reprolysin inhibiting the classical pathway of complement. Mol. Immunol. 42, 1141-1153

    27. Takeya, H., Miyata, T., Nishino, N., Omori-Satoh, T., and Iwanaga, S. (1993) Snake venom hemorrhagic and nonhemorrhagic metalloendopeptidases. Methods Enzymol. 223, 365-378

    28. Hite, L.A., Shannon, J.D., Bjarnason, J.B., and Fox, J.W. (1992) Sequence of a cDNA clone encoding the zinc metalloproteinase hemorrhagic toxin e from Crotalus atrox: evidence for signal, zymogen, and disintegrin-like structures. Biochemistry 31, 6203-6211

    29. Jia, L.G., Shimokawa, K., Bjarnason, J.B., and Fox, J.W. (1996) Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon 34, 1269-1276

    30. Matsui, T., Fujimura, Y., and Titani, K. (2000) Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta 1477, 146-156

    31. De Luca, M., Dunlop, L.C., Andrews, R.K., Flannery, J.V., Jr, Ettling, R., Cumming, D.A., Veldman, G.M., and Berndt, M.C. (1995) A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J. Biol. Chem. 270, 26734-26737

    32. Hamako, J., Matsui, T., Nishida, S., Nomura, S., Fujimura, Y., Ito, M., Ozeki, Y., and Titani, K. (1998) Purification and characterization of kaouthiagin, a von Willebrand factor-binding and -cleaving metalloproteinase from Naha kaouthia cobra venom. Thromb. Haemost. 80, 499-505

    33. O'Keefe, M.C., Caporale, L.H., and Vogel, C.W. (1988) A novel cleavage product of human complement component C3 with structural and functional properties of cobra venom factor. J. Biol. Chem. 263, 12690-12697

    34. Bjarnason,J.B., and Fox, J.W. (1994) Hemorrhagic metalloproteinase from snake venoms. Pharmacol. Ther. 62, 325-372

    35. Vogel, C.W., Bredehorst, R., Fritzinger, D.C., Grunwald, T., Ziegelmuller, P., and Kock, M.A. (1996) Structure and function of cobra venom factor, the complement-activating protein in cobra venom. Adv. Exp. Med. Biol. 391, 97-114

    36. Sharma, S., Jabeen, T., Singh, R.K., Bredhorst, R., Vogel, C.W., Betzel, C., and Singh, T.P. (2001) Structural studies on the cobra venom factor: isolation, purification, crystallization and preliminary crystallographic analysis. Acta Crystallogr. D Biol. Crystallogr. 57, 596-598

    37. von Zabern, I., Przyklenk, H., and Vogt, W. (1982) Chain structure of cobra venom factor from Naja naja and Naja haje venom. Scand. J. Immunol. 15, 357- 362

    38. Vogel, C.W., Smith, C.A., and Muller-Eberhard, H.J. (1984) Cobra venom factor: structural homology with the third component of human complement. J. Immunol. 133, 3235-3241

    39. Gowda, D.C., Schultz, M., Bredehorst, R., and Vogel, C.W. (1992) Structure of the major oligosaccharide of cobra venom factor. Mol. Immunol. 29, 335-342

    40. Gowda, D.C., Petrella, E.C., Raj, T.T., Bredehorst, R., and Vogel, C.W. (1994) Immunoreactivity and function of oligosaccharides in cobra venom factor. J. Immunol. 152, 2977-2986

    41. Kock, M.A., Hew, B.E., Bammert, H., Fritzinger, D.C., and Vogel, C.W. (2004) Structure and function of recombinant cobra venom factor. J. Biol. Chem. 279, 30836-30843

    42. Hensley, P., O'Keefe, M.C., Spangler, C.J., Osborne, J.C., Jr., and Vogel C.W. (1986) The effects of metal ions and temperature on the interaction of cobra venom factor and human complement factor B. J. Biol. Chem. 261, 11038-11044

    43. Vogel, C.W., and Muller-Eberhard, H.J. (1982) The cobra venom factor- dependent C3 convertase of human complement. A kinetic and thermodynamic analysis of a protease acting on its natural high molecular weight substrate. J. Biol. Chem. 257, 8292-8299

    44. DiScipio, R.G., Smith, C.A., Muller-Eberhard, H.J., and Hugli, T.E. (1983) The activation of human complement component C5 by a fluid phase C5 convertase. J. Biol. Chem. 258, 10629-10636

    45. von Zabern, I., Hinsch, B., Przyklenk, H., Schmidt, G., and Vogt, W. (1980) Comparison of Naja n. naja and Naja h. haje cobra-venom factors: correlation between binding affinity for the fifth component of complement and mediation of its cleavage. Immunobiology 157, 499-514

    46. Daha, M.R., Fearon, D.T., and Austen, K.F. (1976) C3 requirements for formation of alternative pathway C5 convertase. J. Immuno1. 17, 630-634

    47. Medicus, R.G., Gotze, O., and Muller-Eberhard, H.J. (1976) Alternative pathway of complement: recruitment of precursor properdin by the labile C3/C5 convertase and the potentiation of the pathway. J. Exp. Med. 144, 1076-1093

    48. Vogel, C.W., and Muller-Eberhard, H.J. (1984) Cobra venom factor: improved method for purification and biochemical characterization. J. Immunol. Meth. 73, 203-220

    49. Zeller, E.A. (1977) Snake venom action: are enzymes involved in it? Experientia. 33, 143-150

    50. Tan, N.H., and Tan, C.S. (1988) A comparative study of cobra (Naja) venom enzymes. Comp. Biochem. Physiol. B. 90, 745-750

    51. Geyer, A., Fitzpatrick, T.B., Pawelek, P.D., Kitzing, K., Vrielink, A., Ghisla, S., and Macheroux, P. (2001) Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Eur. J. Biochem. 268, 4044-4053

    52. Sakurai, Y., Takatsuka, H., Yoshioka, A., Matsui, T., Suzuki, M., Titani, K., and Fujimura, Y. (2001) Inhibition of human platelet aggregation by L-amino acid oxidase purified from Naja naja kaouthia venom. Toxicon 39, 1827-1833

    53. Suhara, T., Fukuo, K., Sugimoto, T., Morimoto, S., Nakahashi, T., Hata, S., Shimizu, M., and Ogihara, T. (1998) Hydrogen peroxide induces up-regulation of Fas in human endothelial cells. J. Immunol. 160, 4042-4047

    54. Menzel, E.J., and Farr, C. (1998) Hyaluronidase and its substrate hyaluronan: biochemistry, biological activities and therapeutic uses. Cancer Lett. 131, 3-11

    55. Girish, K.S., Jagadeesha, D.K., Rajeev, K.B., and Kemparaju, K. (2002) Snake venom hyaluronidase: an evidence for isoforms and extracellular matrix degradation. Mol. Cell Biochem. 240, 105-110

    56. Grossmann, H., and Lieflander, M. (1979) Purification by affinity chromatography and properties of the acetylcholinesterase of formosan cobra (Naja naja atra) venom. J. Chromatogr. 177, 99-107

    57. Marsh, N.A. (2001) Diagnostic uses of snake venom. Haemostasis 31, 211-217

    58. Shafqat, J., Zaidi, Z.H., and Jornvall, H. (1990) Purification and characterization of a chymotrypsin Kunitz inhibitor type of polypeptide from the venom of cobra (Naja naja naja). FEBS Lett. 275, 6-8

    59. Chen, S.W., Huang, R.J., Chen, T.K., and Liau, M.Y. (1984) comparison of toxicity between eastern and western Taiwan cobra venom. Chinese Med. J. 34, 644-649

    60. Chippaux, J.P., Williams, V., and White, J. (1991) Snake venom variability: methods of study, results and interpretation. Toxicon 29, 1279-1303

    61. Creer, S., Malhotra, A., Thorpe, R.S., Stocklin, R.S., Favreau, P.S., and Hao Chou, W.S. (2003) Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric focusing. J. Mol. Evol. 56, 317-329

    62. Daltry, J.C., Wuster, W., and Thorpe, R.S. (1996) Diet and snake venom evolution. Nature 379, 537-540

    63. Chen, T.S., Chung, F.Y., Tjong, S.C., Goh, K.S., Huang, W.N., Chien, K.Y., Wu, P.L., Lin, H.C., Chen, C.J., and Wu, W.G. (2005) Structural difference between group I and group II Cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-Proline conformation on three-fingered toxins. Biochemistry 44, 7414-7426

    64. Nawarak, J., Sinchaikul, S., Wu, C.Y., Liau, M.Y., Phutrakul, S., and Chen, S.T. (2003) Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis 24, 2838-2854

    65. Liau, M.Y., and Huang, R.J. (1997) Toxoids and antivenoms of venomous snakes in Taiwan. J. Toxicol. Toxin Reviews. 16, 163-175

    66. Wuster, W., Golay, P., and Warrell, D.A. (1997) Synopsis of recent developments in venomous snake systematics. Toxicon 35, 319-340

    67. Hubbard, S.C., and Ivatt, R.J. (1981) Synthesis and processing of asparagine- linked oligosaccharides. Annu. Rev. Biochem. 50, 555-583

    68. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., and Dwek, R.A. (2001) Glycosylation and the immune system. Science 291, 2370-2376

    69. Zeng, R., Xu, Q., Shao, X.X., Wang, K.Y., and Xia, Q.C. (1999) Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography-electrospray mass spectrometry and Edman degradation. Eur. J. Biochem. 266, 352-358

    70. Huang, K.F., Chow, L.P., and Chiou, S.H. (1999) Isolation and characterization of a novel proteinase inhibitor from the snake serum of Taiwan habu (Trimeresurus mucrosquamatus). Biochem. Biophys. Res. Commun. 263, 610-616

    71. Osipov, A.V., Astapova, M.V., Tsetlin, V.I., and Utkin, Y.N. (2004) The first representative of glycosylated three-fingered toxins. Cytotoxin from the Naja kaouthia cobra venom. Eur. J. Biochem. 271, 2018-2027

    72. Koyama, J., Inoue, S., Ikeda, K., and Hayashi, K. (1992) Purification and amino-acid sequence of a nerve growth factor from the venom of Vipera russelli russelli. Biochim. Biophys. Acta 1160, 287-292

    73. Nawarak, J., Phutrakul, S., and Chen, S.T. (2004) Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families. J. Proteome Res. 3, 383-392

    74. Ramos, O.H., and Selistre-de-Araujo, H.S. (2004) Comparative analysis of the catalytic domain of hemorrhagic and non-hemorrhagic snake venom metallopeptidases using bioinformatic tools. Toxicon 44, 529-538

    75. Martina, J.A., Daniotti, J.L., and Maccioni, H.J. (2000) GM1 synthase depends on N-glycosylation for enzyme activity and trafficking to the Golgi complex. Neurochem. Res. 25, 725-731

    76. O, K., Hill, J.S., and Pritchard, P.H. (1995) Role of N-linked glycosylation of lecithin:cholesterol acyltransferase in lipoprotein substrate specificity. Biochim. Biophys. Acta 1254, 193-197

    77. Aertgeerts, K., Ye, S., Shi, L., Prasad, S.G., Witmer, D., Chi, E., Sang, B.C., Wijnands, R.A., Webb, D.R., and Swanson, R.V. (2004) N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 13, 145-154

    78. Kyossev, Z.N., and Reeves, W.B. (1997) N-glycosylation is not essential for enzyme activity of 11beta-hydroxysteroid dehydrogenase type 2. Kidney Int. 52, 682-6

    79. Khanna, R., Myers, M.P., Laine, M., and Papazian, D.M. (2001) Glycosylation increases potassium channel stability and surface expression in mammalian cells. J. Biol. Chem. 276, 34028-34034

    80. Ghosh, A., and Heston, W.D. (2003) Effect of carbohydrate moieties on the folate hydrolysis activity of the prostate specific membrane antigen. Prostate 57, 140-151

    81. Li, Y., Luo, L., Rasool, N., and Kang, C.Y. (1993) Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol. 67, 584-588

    82. Boer, U., Neuschafer-Rube, F., Moller, U., and Puschel, G.P. (2000) Requirement of N-glycosylation of the prostaglandin E2 receptor EP3beta for correct sorting to the plasma membrane but not for correct folding. Biochem. J. 350, 839-847

    83. Beeley, J.A. (1969) Separation of human salivary proteins by iso-electric focusing in polyacrylamide gels. Arch. Oral. Biol. 14, 559-561

    84. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685

    85. Schagger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate- polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. Analytical Biochemistry 166, 368-379

    86. Namiranian, S., and Hider, R.C. (1992) Use of HPLC to demonstrate variation of venom toxin composition in the Thailand cobra venoms Naja naja kaouthia and Naja naja siamensis. Toxicon 30, 47-61

    87. Biemann, K. (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99-111

    88. Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299-2301

    89. Tarentino, A.L., Gomez, C.M., and Plummer, T.H., Jr. (1985) Deglycosylation of asparagine-linked glycans by peptide-N-glycosidase F. Biochemistry 24, 4665- 4671

    90. Mazzi, M.V., Marcussi, S., Carlos, G.B., Stabeli, R.G., Franco, J.J., Ticli, F.K., Cintra, A.C., Franca, S.C., Soares, A.M., and Sampaio, S.V. (2004) A new hemorrhagic metalloprotease from Bothrops jararacussu snake venom: isolation and biochemical characterization. Toxicon 44, 215-223

    91. Ito, M., Hamako, J., Sakurai, Y., Matsumoto, M., Fujimura, Y., Suzuki, M., Hashimoto, K., Titani, K., and Matsui, T. (2001) Complete amino acid sequence of kaouthiagin, a novel cobra venom metalloproteinase with two disintegrin-like sequences. Biochemistry 40, 4503-11

    92. Meier, J. (1986) Individual and age-dependent variations in the venom of the fer-de-lance Bothrops atrox. Toxicon 24, 41-46

    93. Cascardi, J., Young, B.A., Husic, H.D., and Sherma, J. (1999) Protein variation in the venom spat by the red spitting cobra, Naja pallida (Reptilia: Serpentes). Toxicon 37, 1271-1279

    94. Monteiro, R.Q., Yamanouye, N., Carlini, C.R., Guimaraes, J.A., Bon, C., and Zingali, R.B. (1998) Variability of bothrojaracin isoforms and other venom principles in individual jararaca (Bothrops jararaca) snakes maintained under seasonally invariant conditions. Toxicon 36, 153-163

    95. Minton, S.A., and Weinstein, S.A. (1986) Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox). Toxicon 24, 71-80

    96. Markland, F.S., Jr. (1991) Inventory of alpha- and beta-fibrinogenases from snake venoms. For the subcommittee on Nomenclature of Exogenous Hemostatic Factors of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb. Haemost. 65, 438-443

    97. Jagadeesha, D.K., Shashidhara murthy, R., Girish, K.S., and Kemparaju, K., (2002) A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja naja) venom. Toxicon 40, 667-675

    98. Gowda, D.C., Jackson, C.M., Kurzban, G.P., McPhie, P., and Davidson, E.A. (1996) Core sugar residues of the N-linked oligosaccharides of Russell's viper venom factor X-activator maintain functionally active polypeptide structure. Biochemistry 35, 5833-5837

    99. Zhu, Z., Liang, Z., Zhang, T., Zhu, Z., Xu, W., Teng, M., and Niu, L. (2005) Crystal structures and amidolytic activities of two glycosylated snake venom serine proteinases. J. Biol. Chem. 280, 10524-10529

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE