簡易檢索 / 詳目顯示

研究生: 陳榮杰
Jung-Chieh Chen
論文名稱: 以圖形與和積演算法解決無線網路問題
GRAPHS AND THE SUM-PRODUCT ALGORITHM FOR SOLVING WIRELESS NETWORK PROBLEMS
指導教授: 陳俊才
Jiunn-Tsair Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 72
中文關鍵詞: 因式圖形和積演算法軟資訊使用者定位動態頻道指定廣播排程問題
外文關鍵詞: Factor graph, Sum-Product Algorithm, Soft-Information, Position Location, Dynamic Channel Assignment, Broadcast Scheduling Problem
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 配合軟資訊傳遞的和積演算法,因式圖形已經被證實不僅能夠以十分優雅的方法、分散式的解決多維度最佳化的問題,同時亦很可能達到最佳解。最近,在通訊系統上應用因式圖形的一個聞名的例子就是低密度同位檢查碼。低密度同位檢查碼實質上已將通訊頻道的頻道容量推到最高可能達到的Shannon極限。在本論文中,我們應用因式圖形的構想來解決無線環境下的網路問題。我們相信這種做法將代表一個全新的突破,而其影響將十分深遠。

    使用者定位、動態頻道指定、和廣播排程問題等等全都是無線網路的問題,雖然此等問題的複雜度繁易不一。但是,到目前為止,大家在處理上述的無線網路問題時,總是採用非最佳化的解決方式。這個現象是由於以下的所有或部分原因所造成:1) 在無線網路中,通常有太多的參數同時需要最佳化。2) 無線網路的參數以各種複雜的方式、整體性的相互影響,因而導致最佳化的困難。3) 如果採取集中式的最佳化處理,中央處理中心必須收集網路中的所有網路參數。這是不切實際的做法。4) 如果採取分散式的最佳化處理,演算法追求的通常只是區域性的最佳化,而不是整體的最佳化。區域性的最佳化的效果,有可能遠遠不及整體的最佳化的效果。

    網路問題天生便是分散式的問題。因此,網路問題非常匹配以因式圖形為基礎的演算法之特性。本論文將提出非常多個全新的因式圖形演算法來解決上述的無線網路問題。基本上,這些演算法有能力解出整體的最佳化的結果,同時並兼顧演算法的分散性特性與非常低複雜度的要求。除此之外,這些因式圖形演算法可以被應用在分時多工/分碼多工/正交分頻多工的各種通訊系統中:也就是說,應用在第二代/第三代/第四代的各種系統多工模式。在多階層、不規則形狀的無線網路細胞、傳輸多時率訊息的無線網路下,這些因式圖形演算法的優勢將變得格外明顯。這是因為因式圖形演算法天生就是調適性,可以隨著網路狀況的變化而作出適當的調適。相關於因式圖形演算法的各種表現極限、強韌性、穩定性、最佳化程度、與複雜度也都將在本論文中作有系統的分析。


    Factor graphs, together with soft-information-passing sum-product algorithms, are known to be able to elegantly solve complex multi-dimensional optimization problems in a distributed low-complexity manner and are likely to reach an optimal solution. One famous recent application of the factor graph is on the LDPC (Low Density Parity Check) code, which virtually pushes the channel capacity to the Shannon limit. In this thesis, we propose to apply the factor graph ideas to solve network problems in wireless scenarios. We believe this approach is revolutionary and its impact is significant.

    Position location, dynamic channel assignment, and broadcast scheduling problem are all wireless network problems with various degrees of complexity. Up to now, people always go for sub-optimal solutions in solving these problems due to (part of) the following reasons: 1) There are way too many parameters to optimize in a wireless network. 2) The network parameters interact among themselves jointly in a very complicated way and difficult to optimize. 3) Collecting all the network parameters from all the network nodes to have a centralized joint process is unpractical. 4) Most distributed approaches proposed in the literature are only locally optimal, sometimes far worse than the globally optimal solution.

    Since network problems are by nature distributed, which happens to perfectly suit the characteristics of the factor-graph-based algorithms. Quite a few brand new factor-graph-based algorithms are proposed in this thesis to solve the wireless network problems described above. These algorithms are expected to reach the globally optimal solution while remaining distributed and very low complexity. In addition, these algorithms can be applied to TDMA/CDMA/OFDMA systems, i.e. systems with respectively 2G/3G/4G multiple access schemes. The advantages of these algorithms are especially obvious when dealing with wireless networks with multi-layer irregularly-shaped wireless network cells and with multi-rate data transmission, since these algorithms are naturally adaptive and can dynamically adjust themselves to the variation of the network scenario. Various performance bounds, robustness, stability, optimality and complexity of the proposed factor-graph-based algorithms are also systematically analyzed in this thesis.

    ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Chapter 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Wireless Position Location Problems . . . . . . . . . . . . . . . . . . . . 2 1.2 Dynamic Channel Assignment Problems . . . . . . . . . . . . . . . . . . 3 1.3 Broadcast Scheduling Problems Problems . . . . . . . . . . . . . . . . . . 3 1.4 The Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. FACTOR GRAPHS AND THE SUM-PRODUCT ALGORITHM . . . . . . . 5 2.1 Factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The Sum-Product Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3. NETWORK-SIDE MOBILE POSITION LOCATION USING FACTOR GRAPHS 10 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Factor Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.2 Soft-Information Calculation . . . . . . . . . . . . . . . . . . . . 21 3.4 Performance Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1 Least Square Solution Accuracy . . . . . . . . . . . . . . . . . . 26 3.4.2 ML Solution Accuracy with Gaussian TOA/Range Measurement Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4. A NOVEL DYNAMIC CHANNEL ASSIGNMENT STRATEGY USING NOR- MAL GRAPHS FOR HIERARCHICAL CELLULAR SYSTEMS . . . . . . . 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 Normal Graph Modeling . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.2 Local Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.3 Soft-Information Calculation . . . . . . . . . . . . . . . . . . . . . 40 4.3 Simulation Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5. A NOVEL BROADCAST SCHEDULING STRATEGY USING FACTOR GRAPH AND THE SUM-PRODUCTION ALGORITHM . . . . . . . . . . . . . . . . 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.1 Factor Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 Local Constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3.3 Soft-Information Calculation . . . . . . . . . . . . . . . . . . . . . 56 5.4 Numerical Examples and Performance Analysis . . . . . . . . . . . . . . 60 5.4.1 Average Packet Delay Analysis . . . . . . . . . . . . . . . . . . . 61 5.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6. SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

    \bibitem{Ksc-01}
    F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, ``Factor graphs
    and the sum-product algorithm,'' {\em IEEE Transactions on
    Information Theory,} vol. 47, pp. 498-519, Feb. 2001.

    \bibitem{Chu-01}
    Sae-Young Chung; Forney, G.D., Jr.; Richardson, T.J.; Urbanke, R., ``On the design of low-density
    parity-check codes within 0.0045 dB of the Shannon limit,''
    {\em IEEE Communications Letters,} pp. 58-60, Feb. 2001.

    \bibitem{Skl-97}
    Sklar, B, ``A primer on turbo code concepts,'' {\em IEEE Communications Magazine,} pp. 94-102, Dec. 1997.

    \bibitem{Wor-01}
    Worthen, A.P.; Stark, W.E., ``Unified design of iterative receivers using factor graphs,''
    {\em EEE Transactions on Information Theory,} pp. 843 -849, Feb. 2001.

    \bibitem{Zha-00}
    Yilin Zhao, ``Mobile phone location determination and its impact on intelligent transportation systems,''
    {\em IEEE Transactions on Intelligent Transportation Systems,} pp. 55-64, Mar 2000.

    \bibitem{Caf-99}
    Caffery, J.J.; Stuber, G.L., ``Overview of radiolocation in CDMA cellular systems,''
    {\em IEEE Communications Magazine,} pp. 38-45, Apr. 1998.

    \bibitem{Caf-98}
    Caffery, J., Jr.; Stuber, G.L., ``Subscriber location in CDMA cellular networks,''
    {\em IEEE Transactions on Vehicular Technology,} pp. 406-416, May 1998.

    \bibitem{Hata-80}
    Hata, M; Nagatsu, T, ``Mobile location using signal strength measurements in a cellular system,''
    {\em IEEE Transactions on Vehicular Technology,} pp. 245-251, May 1980.

    \bibitem{Cha-94}
    Chan, Y.T.; Ho, K.C. , ``A simple and efficient estimator for hyperbolic location,''
    { \em IEEE Transactions on Signal Processing,} pp. 1905-1915, Aug. 1994.

    \bibitem{Foy-76}
    Foy, W.H., ``Position location solutions by Taylor-Series estimation,''
    {\em IEEE Transactions on Aerospace and Electronic Systems,} pp. 187-193, Mar. 1976.

    \bibitem{Caf-00}
    J. Caffery, ``A new approach to the geometry of TOA location,'' in
    {\em IEEE Vehicular Technology Conference,} vol. 4, pp. 1943-1949,
    Sept. 2000.

    \bibitem{Zhang-89}
    M. Zhang and T.-S. Yum, ``Comparisons of channel-assignment strategies in cellular mobile telephone systems,''
    {\em IEEE Transactions on Vehicular Technology,} pp. 211-215, Nov. 1989.

    \bibitem{Zhang-91}
    M. Zhang and T.-S. Yum, ``The non-uninform compact pattern allocation algorithm for cellular mobile systems,''
    {\em IEEE Transactions on Vehicular Technology,} pp. 387-391, May 1991.

    \bibitem{Zander-93}
    J. Zander and H. Eriksson, ``Asymptotic bounds on the performance of a class of dynamic channel assignment algorithms,''
    {\em IEEE Journal on Selected Areas in Communications,} pp. 926-933, Aug. 1993.

    \bibitem{Cimini-94}
    L. J. Cimini Jr., G. J. Foschini, C.-L. I, and Z. Miljanic,
    ``Call Blocking Peformance of Distributed Algorithms for Dynamic Channel Allocation in Microcells,''
    {\em IEEE Trans. Communications,} pp. 2600-2607, Aug. 1994.

    \bibitem{I-98}
    C.-L. I and M. A. Haleem, ``Deterministic co-existence dynamic channel assignment algorithm,''
    {\em Proc. IEEE GLOBECOM,} pp. 1650-1656, 1997.

    \bibitem{Kat-96}
    I. Katzela and M. Naghshineh, ``Channel assignment schemes for cellular mobile telecommunication systems: a comprehensive survey''
    {\em IEEE Personal Communications,} pp. 10-31, June. 1996.

    \bibitem{Sung-01}
    Chi Wan Sung; Wing Shing Wong,``Power control and rate management for wireless multimedia CDMA systems,''
    {\em IEEE Transactions on Communications}, pp. 1215-1226, Jul. 2001.

    \bibitem{Chuang-00}
    Chuang, J.C.-I.; Leung, K.K.; Xiaoxin Qiu; Timiri, S.; Li-Chun Wang, ``Power control for wireless packet voice with application to EDGE system,''
    {\em Proc. IEEE GLOBECOM,} pp. 213-219, Nov. 2000.

    \bibitem{Zha-02}
    Yilin Zhao, ``Standardization of mobile phone positioning for 3G
    systems ,'' {\em IEEE Communications Magazine,} vol. 40, pp.
    108-116, Jul., 2002.

    \bibitem{Qi-01}
    Qi Bi, G.L. Zysman, and H. Menkes, ``Wireless mobile
    communications at the start of the 21st century,'' {\em IEEE
    Communications Magazine,} vol. 39, pp. 110-116, Jan. 2001.

    \bibitem{Spe-98M}
    J. Caffery, Jr. and G. Stuber, ``Overview of wireless location in
    CDMA systems,'' {\em IEEE Communications Magazine,} vol. 36, pp.
    38-45, Apr., 1998.

    \bibitem{Caf-book}
    J. Caffery, {\em Wireless Location in CDMA Cellular Radio
    Systems,} Kluwer Academic Publishers, 1999.

    \bibitem{Caf-98J}
    J. Caffery, Jr. and G. Stuber, ``Subscriber location in CDMA
    cellular networks,'' {\em IEEE Transactions on Vehicluar
    Technology,} vol. 47, pp. 406-416, May 1998.

    \bibitem{Hat-80}
    M. Hata and T. Nagatsu, ``Mobile location using signal strength
    measurements in a cellular system,'' {\em IEEE Transactions on
    Vehicluar Technology,} vol. 29, pp. 245-251, May 1980.

    \bibitem{Cha-94}
    Y. Chan and K. Ho, ``A simple and efficient estimator for
    hyperbolic location,'' {\em IEEE Transactions on Signal
    Processing,} vol. 42, no. 8, pp. 1905-1915, Aug. 1994.

    \bibitem{Sil-96}
    M. I. Silventoinen and T. Rantalainen, ``Mobile station emergency
    locating in GSM,'' in {\em IEEE International Conference on
    Personal Wireless Communications,} pp. 232-238, 1996.

    \bibitem{Caf-00}
    J. Caffery, ``A new approach to the geometry of TOA location,'' in
    {\em IEEE Vehicular Technology Conference,} vol. 4, pp. 1943-1949,
    Sept. 2000.

    \bibitem{Foy-76}
    W. H. Foy, ``Position location solutions by Taylor-Series
    estimation,'' {\em IEEE Transactions on Aerospace and Electronic
    Systems,} vol. 12, no. 2, pp. 187-193, Mar. 1976.

    \bibitem{Che-99}
    P.-C. Chen, ``A non-line-of-sight error mitigation algorithm in
    location estimation,'' in {\em IEEE WCNC,} pp. 316-320, 1999.

    \bibitem{Wan-02}
    Q. Wan and Y.-N. Ping, ``Enhanced linear estimator for mobile
    location using range difference measurements,'' {\em IEICE
    Transactions on Communication,} Vol. E85-B no.5 pp. 946-950, May
    2002.

    \bibitem{Fan-book}
    J. Fan, {\em Constrained Coding and Soft Iterative Decoding,}
    Kluwer Academic Publishers, 2001.

    \bibitem{Wyl-96}
    M. P. Wylie and J. Holtzman, ``The non-line of sight problem in
    mobile location estimation,'' in {\em IEEE International
    Conference on Universal Personal Communications,} pp. 827-831,
    1996.

    \bibitem{Waa-02}
    C.-D. Wann, Y.-M. Chen, and M.-S. Lee, ``Mobile location tracking
    with NLOS error mitigation,'' in {\em IEEE Global
    Telecommunications Conference,} 2002.

    \bibitem{Con-02}
    L. Cong and W. Zhang, ``Hybrid tdoa/aoa mobile user location for
    wideband cdma cellular systems,'' {\em IEEE Transactions on
    Wireless Communications,} vol. 1, pp. 439-447, Jul. 2002.

    \bibitem{Tor-84}
    D. J. Torrieri, ``Statistical theory of passive location systems,'' {\em IEEE Transactions on Aerospace and Electronic
    Systems,} vol. 20, no. 2, pp. 183-198, Mar.1984.

    \bibitem{Qi-02}
    Y. Qi and H. Kobayashi, ``A Unified Analysis for Cramer-Rao Lower
    Bound for Geolocation,'' {\em Proc. 36th Annual Conference on Information
    Sciences and Systems,} Princeton University, March 21-24, 2002.

    \bibitem{Lin-book}
    G. Lindfield and J. Penny, {\em Numerical Methods Using MATLAB,}
    Ellis Horwood Limitd, 1995.

    \bibitem{Li-97}
    Y. Li, M. J. Feuerstein, and D. O. Reudink, ``Performance
    evaluation of a cellular base station multibeam antenna,'' {\em
    IEEE Transactions on Vehicular Technology,} vol. 46, pp. 56–67,
    Feb. 1997.

    \bibitem{Kat-96}
    I. Katzela and M. Naghshineh, ``Channel assignment schemes for
    cellular mobile telecommunication systems: a comprehensive
    survey,'' {\em IEEE Personal Communication,} vol. 33, pp. 10-31,
    Jun. 1996.

    \bibitem{Tur-98}
    M. Turkboylari and G. L. Stuber, ``An efficient algorithm for
    estimating the signal-to-interference ratio in TDMA cellular
    systems,'' {\em IEEE Transactions on Communications,} vol. 46, pp.
    728-731, June 1998.

    \bibitem{For-01}
    G. D. Forney, ``Codes on graphs: normal realizations,'' {\em IEEE
    Transactions on Information Theory,} vol. 47, pp. 520-548, Feb.
    2001.

    \bibitem{FCC}
    FCC, “Revision of the commission’s rules to ensure compatibility
    with enhanced 911 emergency calling systems,” {\em Report and
    Order and Further Notice of Proposed Rulemaking,} Washington D.C.
    Federal

    \bibitem{Eph-90}
    A. Ephremides and T. V. Truong, ``Scheduling broadcast in multihop
    radio networks,'' {\em IEEE Transactions on Communications,} vol.
    38, pp. 456-460, Apr. 1990.

    \bibitem{Wan-97}
    G. Wang and N. Ansari, ``Optimal broadcast scheduling in packet
    radio networks using mean field annealing,'' {\em IEEE Journal on
    Selected Arreas in Communications,} vol. 15, pp. 250-259, Feb.
    1997.

    \bibitem{Sal-03}
    S. Salcedo-Sanz, C. Bousono-Calzon, and A. R. Figueiras-Vidal, ``A
    mixed neural-genetic algorithm for the broadcast scheduling
    problem,'' {\em IEEE Transactions on Wireless Communications,}
    vol. 2, pp. 277-283, Mar. 2003.

    \bibitem{Gal-62}
    R. G. Gallage, ``Low density parity check codes,'' {\em ” IRE
    Transactions on Information Theory,} vol. IT-18, pp. 21-28, Jan.
    1962.

    \bibitem{Mac-96}
    D. J. C. MacKay and R. M. Neal, ``Near Shannon limit performance
    of low density parity check codes,'' {\em Electronics Letters,}
    vol. 32, pp. 1645-1646, Aug. 1996.

    \bibitem{For-01}
    G. D. Forney, ``Codes on graphs: normal realizations,'' {\em IEEE
    Transactions on Information Theory,} vol. 47, pp. 520-548, Feb.
    2001.

    \bibitem{Jun-99}
    D. Jungnickel, {\em Graphs, Networks and Algorithms.} Berlin,
    Germany: Springer-Verlag, 1999.

    \bibitem{Ber-87}
    D. Bertsekas and R. Gallager, {\em Data Networks.} Englewood
    Cliffs, NJ: Prentice-Hall, 1987.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE