簡易檢索 / 詳目顯示

研究生: 吳亦中
Wu, Yi-Chung
論文名稱: 高光響應梳狀二硫化鎢複合光偵測器
WS2 Strip Hybrid Phototransistor with High Responsivity
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
Lee, Kuei-Yi
沈昌宏
Shen, Chang-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 過渡金屬二硫族化物光偵測器高光響應異質接面
外文關鍵詞: transition metal dichalcogenides, photodetector, high responsivity, heterojunction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近十年中,過渡金屬二硫族化物 (Transition metal dichalcogenides,
    TMDs) 因其多樣的電學特性被廣泛研究。由於單層的 TMDs 具有直接能
    隙而獲得對光偵測的高靈敏度,使其被廣泛應用於光偵測元件中。在本
    論文中,我們製作一個複合光偵測器,其結構為在 WS2 通道旁製作梳狀
    的 WS2/WSe2 異質結構作為與金屬的接觸。在光的照射下,由於 WS2 與
    WSe2 的異質接面屬於 Type-II 能帶結構,因此在梳狀結構上產生大量的
    光激發電子從 WSe2 轉移到 WS2。電荷的轉移導致接觸能障下降,使得
    金半接觸變好,進而讓元件效能提升。文中所製作的複合光偵測器其載子
    遷移率可達 8.9 cm2
    /V ·s 及 107 的電流開關比,而光響應可以到達 4800
    A/W。此外,我們也對梳狀異質結構進行了 TLM 量測。在不照光時,接
    觸電阻為 106.7 kΩ · µm 而轉移長度為 33.64 nm;在照光後,接觸電阻降
    至 10.49 kΩ · µm 而轉移長度降為 3.56 nm。


    In the past decade, transition metal dichalcogenide(TMDs) have been extensively studied due to their diverse electronic properties. Because of the
    high sensitivity to light detection obtained from the direct band gap properties, monolayer TMDs have been widely used in optoelectronic devices.
    In this work, we demonstrate a composite photodetector comprising WS2
    channel sandwiched between strip-shaped WS2/WSe2 heterostructure as the
    metal contact. Upon light illumination, since the type-II band alignment at
    the WS2/WSe2 heterojunction, a large number of photoexcited electrons are
    generated on the strip structure and transferred from WSe2 to WS2. Charge
    transfer leads to reduce contact barrier and makes contact better, thereby
    improving the performance of the device. The composite photodetector
    exhibits a high mobility of 8.9 cm2
    /V ·s and a current on/off ratio of 107
    .
    It also can reach a high responsivity of 4800 A/W. Furthermore, transfer
    length method(TLM) measurement was also performed on strip-shaped heterostructure. The contact resistance is 106.7 kΩ · µm and the transfer length
    is 33.64 nm without illumination. Yet, under light illumination, the contact
    resistance decreases to 10.49 kΩ · µm and the transfer length reaches 3.56
    nm.

    誌謝 i 摘要 ii Abstract iii 目錄 iv 第 1 章 緒論 1 1.1半導體的發展史 1 1.2 半導體製程的微縮與限制 2 1.3 二維材料介紹 4 1.4 半導體光偵測元件簡介 5 1.4.1 光偵測器 6 1.4.2 常見的光偵測器種類 8 1.5 論文架構 10 第 2 章 過渡金屬二硫族化物介紹 11 2.1 元素組成與晶體結構 11 2.1.1 元素組成 11 2.1.2 晶體結構 12 2.2 電子能帶 13 2.3 製備方法 15 2.3.1 機械剝離法 16 2.3.2 化學氣相沉積法 16 2.4 材料檢測 18 2.4.1 拉曼散射頻譜 18 2.4.2 光致螢光光譜 20 第 3 章 過渡金屬二硫族化物與金屬接處探討 22 3.1 過渡金屬二硫族化物與金屬接觸機制 22 3.2 金屬接觸與費米能階釘扎探討 24 3.3 金屬接觸分析之方法 27 第 4 章 元件製程 31 4.1 梳狀異質結構製作 31 4.1.1 製程使用儀器簡介 31 4.1.2 製程步驟細節 35 4.1.3 材料檢測 39 4.2 TLM 製作 40 4.3 光偵測器製作 42 第 5 章 實驗量測結果分析 45 5.1 元件量測方法與量測系統 45 5.2 光電元件量測分析 46 5.2.1 基本電晶體量測分析 46 5.2.2 光電特性量測分析 48 5.3 垂直堆疊結構之量測分析 50 5.3.1 元件製程 50 5.3.2 光電特性量測分析 51 5.4 接觸電阻量測分析 53 第 6 章 實驗總結與未來展望 58 參考文獻 59

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev.,
    vol. 74, pp. 230–231, 07 1948.
    [2] “History of the transistor (the crystal triode).” [Online; accessed 14-January-2023].
    [3] “First monolithic silicon ic chip.” [Online; accessed 14-January-2023].
    [4] Wikipedia contributors, “Moore’s law — Wikipedia, the free encyclopedia,” 2023.
    [Online; accessed 14-January-2023].
    [5] “Hkepc.” [Online; accessed 14-January-2023].
    [6] K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
    Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,”
    Science, vol. 306, pp. 666–669, 08 2004.
    [7] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “iii- v compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. 31,
    pp. 1643–1655, 11 1984.
    [8] “Common types of photodetectors.” [Online; accessed 15-January-2023].
    [9] M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature chemistry,
    vol. 5, pp. 263–275, 04 2013.
    [10] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics
    and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature
    nanotechnology, vol. 7, pp. 699–712, 11 2012.
    [11] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on
    electronic structures of transition metal dichalcogenides: 2h-m x 2 semiconductors
    (m= mo, w; x= s, se, te),” Physical Review B, vol. 85, no. 3, p. 033305, 2012.
    [12] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,”
    Chemical reviews, vol. 113, 01 2013.
    [13] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and
    A. Geim, “Two-dimensional atomic crystals,” Proceedings of the National Academy
    of Sciences of the United States of America, vol. 102, pp. 10451–10453, 08 2005.
    [14] A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer mos2 and
    ws2,” Physical Review B, vol. 84, p. 155413, 10 2011.
    [15] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal
    contacts to monolayer transition-metal dichalcogenide semiconductors,” p. 031005,
    07 2014.
    [16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park,
    and W. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, 01 2017.
    [17] C. , L. Colombo, R. Wallace, and K. Cho, “The unusual mechanism of partial fermi
    level pinning at metal-mos2 interfaces,” Nano letters, vol. 14, 03 2014.
    [18] K. Sotthewes, R. Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas,
    H. Zandvliet, and P. Bampoulis, “Universal fermi level pinning in transition metal
    dichalcogenides,” The Journal of Physical Chemistry C, vol. 123, 02 2019.
    [19] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance
    distribution at the contact between molybdenum disulfide and metals,” ACS Nano,
    vol. 8, pp. 7771–7779, 07 2014.
    [20] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, L.-J. Li, and etc.,
    “Epitaxial growth of a monolayer wse2-mos2 lateral p-n junction with an atomically
    sharp interface,” Science, vol. 349, pp. 524–528, 07 2015.

    QR CODE