研究生: |
吳亦中 Wu, Yi-Chung |
---|---|
論文名稱: |
高光響應梳狀二硫化鎢複合光偵測器 WS2 Strip Hybrid Phototransistor with High Responsivity |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
李奎毅
Lee, Kuei-Yi 沈昌宏 Shen, Chang-Hong |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 過渡金屬二硫族化物 、光偵測器 、高光響應 、異質接面 |
外文關鍵詞: | transition metal dichalcogenides, photodetector, high responsivity, heterojunction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近十年中,過渡金屬二硫族化物 (Transition metal dichalcogenides,
TMDs) 因其多樣的電學特性被廣泛研究。由於單層的 TMDs 具有直接能
隙而獲得對光偵測的高靈敏度,使其被廣泛應用於光偵測元件中。在本
論文中,我們製作一個複合光偵測器,其結構為在 WS2 通道旁製作梳狀
的 WS2/WSe2 異質結構作為與金屬的接觸。在光的照射下,由於 WS2 與
WSe2 的異質接面屬於 Type-II 能帶結構,因此在梳狀結構上產生大量的
光激發電子從 WSe2 轉移到 WS2。電荷的轉移導致接觸能障下降,使得
金半接觸變好,進而讓元件效能提升。文中所製作的複合光偵測器其載子
遷移率可達 8.9 cm2
/V ·s 及 107 的電流開關比,而光響應可以到達 4800
A/W。此外,我們也對梳狀異質結構進行了 TLM 量測。在不照光時,接
觸電阻為 106.7 kΩ · µm 而轉移長度為 33.64 nm;在照光後,接觸電阻降
至 10.49 kΩ · µm 而轉移長度降為 3.56 nm。
In the past decade, transition metal dichalcogenide(TMDs) have been extensively studied due to their diverse electronic properties. Because of the
high sensitivity to light detection obtained from the direct band gap properties, monolayer TMDs have been widely used in optoelectronic devices.
In this work, we demonstrate a composite photodetector comprising WS2
channel sandwiched between strip-shaped WS2/WSe2 heterostructure as the
metal contact. Upon light illumination, since the type-II band alignment at
the WS2/WSe2 heterojunction, a large number of photoexcited electrons are
generated on the strip structure and transferred from WSe2 to WS2. Charge
transfer leads to reduce contact barrier and makes contact better, thereby
improving the performance of the device. The composite photodetector
exhibits a high mobility of 8.9 cm2
/V ·s and a current on/off ratio of 107
.
It also can reach a high responsivity of 4800 A/W. Furthermore, transfer
length method(TLM) measurement was also performed on strip-shaped heterostructure. The contact resistance is 106.7 kΩ · µm and the transfer length
is 33.64 nm without illumination. Yet, under light illumination, the contact
resistance decreases to 10.49 kΩ · µm and the transfer length reaches 3.56
nm.
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev.,
vol. 74, pp. 230–231, 07 1948.
[2] “History of the transistor (the crystal triode).” [Online; accessed 14-January-2023].
[3] “First monolithic silicon ic chip.” [Online; accessed 14-January-2023].
[4] Wikipedia contributors, “Moore’s law — Wikipedia, the free encyclopedia,” 2023.
[Online; accessed 14-January-2023].
[5] “Hkepc.” [Online; accessed 14-January-2023].
[6] K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,”
Science, vol. 306, pp. 666–669, 08 2004.
[7] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “iii- v compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. 31,
pp. 1643–1655, 11 1984.
[8] “Common types of photodetectors.” [Online; accessed 15-January-2023].
[9] M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature chemistry,
vol. 5, pp. 263–275, 04 2013.
[10] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature
nanotechnology, vol. 7, pp. 699–712, 11 2012.
[11] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on
electronic structures of transition metal dichalcogenides: 2h-m x 2 semiconductors
(m= mo, w; x= s, se, te),” Physical Review B, vol. 85, no. 3, p. 033305, 2012.
[12] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,”
Chemical reviews, vol. 113, 01 2013.
[13] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and
A. Geim, “Two-dimensional atomic crystals,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 102, pp. 10451–10453, 08 2005.
[14] A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer mos2 and
ws2,” Physical Review B, vol. 84, p. 155413, 10 2011.
[15] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal
contacts to monolayer transition-metal dichalcogenide semiconductors,” p. 031005,
07 2014.
[16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park,
and W. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, 01 2017.
[17] C. , L. Colombo, R. Wallace, and K. Cho, “The unusual mechanism of partial fermi
level pinning at metal-mos2 interfaces,” Nano letters, vol. 14, 03 2014.
[18] K. Sotthewes, R. Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas,
H. Zandvliet, and P. Bampoulis, “Universal fermi level pinning in transition metal
dichalcogenides,” The Journal of Physical Chemistry C, vol. 123, 02 2019.
[19] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance
distribution at the contact between molybdenum disulfide and metals,” ACS Nano,
vol. 8, pp. 7771–7779, 07 2014.
[20] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, L.-J. Li, and etc.,
“Epitaxial growth of a monolayer wse2-mos2 lateral p-n junction with an atomically
sharp interface,” Science, vol. 349, pp. 524–528, 07 2015.