研究生: |
陳家庠 Chen, Chia-Hsiang |
---|---|
論文名稱: |
四元靶材濺鍍方式製備銅銦鎵硒太陽能電池 One-step sputtering process for CIGS solar cells application from a single quaternary target |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
曾百亨
Tseng, Bae-Heng 張正陽 Chang, Jenq -Yang 蔡松雨 Tsai, Song-Yeu 闕郁倫 Chueh, Yu-lun 賴志煌 Lai, Chih-Huang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 191 |
中文關鍵詞: | 薄膜太陽能電池 、銅銦鎵硒 、四元靶 、一段式 、濺鍍 |
外文關鍵詞: | thin film solar cells, CIGS, quaternary target, one-step, sputter |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來再生能源的議題持續發酵,太陽能便是其中一種深具潛力的選擇,許多類型的太陽能電池,包括單多介面砷化鎵、單多晶矽太陽能電池以及其他正在興起的技術已經被廣泛的研究,以期能取帶現有的發電技術。本論文主要的研究為銅銦鎵硒薄膜技術的開發,我們成功開發出簡單的一段式濺鍍銅銦鎵硒薄膜之製備方法並研究以此方式製備的薄膜及元件特性。
在第四章的部分,我們的結果證明一段式濺鍍應用於製備銅銦鎵硒薄膜的可行性,藉由單一銅銦鎵硒四元靶材搭配脈衝直流濺鍍鍍方式在五百度的基版溫度下,即便沒有額外的硒供應,我們仍可製備出具有黃銅礦結構的銅銦鎵硒薄膜。而由此方式製備的銅銦鎵硒薄膜不同於傳統蒸鍍方式製備之特性,為具有(112)優選方向的柱狀晶結構,此外我們也針對此方式製備之薄膜及元件特性作進一步的探討與分析。在此章節,利用接近計量比的銅銦鎵硒靶材製備之元件,其最高效率可達到8.22 %。
在第五章的部分,我們探討靶材成分對於銅銦鎵硒薄膜及元件的影響。藉由控制靶材成分,我們可以調變薄膜的組成從富銅相變至缺銅相,而富銅相銅銦鎵硒薄膜常見的銅硒二次相也可經由此方式有效降低,因此即便沒有氫化鉀處理的薄膜仍可得到極佳的元件表現,使用稍微缺銅且富硒的銅銦鎵硒四元靶材,我們得到最高效率達10.14 %之元件。此外我們也在銅銦鎵硒薄膜上開發出非破壞性的成分分析技術,藉由歐傑電子顯微鏡及場發式電子微探針技術,可以分析表面及內部成分之分布,我們發現造成富銅的銅銦鎵硒元件在長波長範圍的光電流響應較低的原因,應該跟不均勻的硒分布有關。
在第六章的部分,我們探討如何藉由光學及電性的觀點改善元件之表現,包括鈉的摻雜以及奈米結構的導入。濺鍍氟化鈉製程目前的文獻中尚無報導,在本論文我們已成功將其與一段式濺鍍銅銦鎵硒薄膜製程整合,並觀察到明顯元件表現之提升,最高效率可達10.41 %。此外我們也開發出不需模版的方式製備銅銦鎵硒奈米針尖陣列,此奈米結構可以有效提升光捕獲效率並提升光電流之收集。
Recently, solar energy has drawn much attention due to the development of renewable energy. Various solar cells have been widely studied for the application of solar energy to replace the conventional power for terrestrial application, including single/multi junction GaAs, crystalline Si cells (single/ multi crystalline), thin film technologies (CIGS, CdTe, amorphous-Si), and other emerging technologies. In this dissertation, the main research focus is on CIGS thin film technology. We have developed a simplified fabrication process and investigated the characteristics of CIGS solar cells prepared by the one-step sputtering process.
In the first topic of this dissertation, we demonstrated the feasibility of one-step sputtering process for the fabrication of CIGS absorbers. By using pulse DC sputtering from a single quaternary CIGS target, the chalcopyrite structure is spontaneously developed on the substrate at 500 oC even without extra Se supply. The obtained CIGS absorber layer possesses unique columnar grains with (112) preferred orientation, which is quite different from those prepared by co-evaporation process. In addition, the characterization of one-step sputtered CIGS films and devices were also addressed. The best efficiency of 8.22 % was achieved at the area of 0.4 cm2 with open circuit voltage (Voc) of 505 mV, short circuit current density (Jsc) of 24.76 mA/cm2 and the fill factor (FF) of 0.66 by using a nearly stoichiometric CIGS target.
The second topic of this dissertation focuses on the target composition effect on the CIGS films and devices. By tuning the composition of CIGS targets, we modified the film composition from Cu-rich to slight Cu-poor. In addition, the Cu2-xSe second phase was suppressed by using a modified CIGS target. Even no KCN treatment is required to obtain device quality CIGS films. The best device efficiency of 10.14 % was achieved at the area of 0.4 cm2 with open circuit voltage (Voc) of 505 mV, short circuit current density (Jsc) of 32.3 mA/cm2 and the fill factor (FF) of 0.63 by using a modified CIGS target. Furthermore, a non-destructive compositional mapping is demonstrated for the investigation of compositional distribution on the top surface and at deep level of CIGS films by using surface sensitive Auger electron spectroscopy (AES) and bulk sensitive field emission micro-analyzer (FE-EPMA). We found the inhomogeneous distribution of Se in the Cu-rich CIGS films may be related to the low photocurrent response in the long wavelength region. .
The third topic in this dissertation focuses on the improvement of device performance. Na incorporation and nanostructure were introduced to modify the electrical and optical behaviors of CIGS solar cells. Sputtered NaF was first reported in this dissertation which could be integrated with our one-step sputtering process of CIGS absorbers. Better device efficiency of 10.41 % was observed while the NaF was added. Furthermore, we also developed a template-free technique to create nanotip arrays on the surface CIGS absorbers to enhance light harvesting, which could improve the collection of photocurrent.
1. M. Wiemer, V. Sabnis and H. Yuen, San Diego, SPIE, 8108, 810804 (2011).
2. J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Applied Physics Letters 73 (14), 1991-1993 (1998).
3. O. Schultz, S. W. Glunz and G. P. Willeke, Progress in Photovoltaics: Research and Applications 12 (7), 553-558 (2004).
4. X. C. W. Zhou Fang, Hong Cai Wu, and Ce Zhou Zhao,, International Journal of Photoenergy 2011 (2011).
5. B. O'Regan and M. Gratzel, Nature 353 (6346), 737-740 (1991).
6. M. Grätzel, Inorganic Chemistry 44 (20), 6841-6851 (2005).
7. C. W. Tang, Applied Physics Letters 48 (2), 183-185 (1986).
8. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, Progress in Photovoltaics: Research and Applications, 20, 6 (2011).
9. C. Gavin, Materials Today 10 (11), 42-50 (2007).
10. http://www.miasole.com, (2010).
11. W. Shockley and H. J. Queisser, Journal of Applied Physics 32 (3), 510-519 (1961).
12. T. Unold and H. W. Schock, Annual Review of Materials Research 41 (1), 297-321 (2011).
13. F. Kessler and D. Rudmann, Solar Energy 77 (6), 685-695 (2004).
14. T. Satoh, Y. Hashimoto, S.-i. Shimakawa, S. Hayashi and T. Negami, Solar Energy Materials and Solar Cells 75 (1-2), 65-71 (2003).
15. R. Wuerz, A. Eicke, M. Frankenfeld, F. Kessler, M. Powalla, P. Rogin and O. Yazdani-Assl, Thin Solid Films 517 (7), 2415-2418 (2009).
16. S. Marsillac, S. Dorn, R. Rocheleau and E. Miller, Solar Energy Materials and Solar Cells 82 (1-2), 45-52 (2004).
17. T. Yagioka and T. Nakada, Applied Physics Express 2 (7), 072201 (2009).
18. R. Birkmire, E. Eser, S. Fields and W. Shafarman, Progress in Photovoltaics: Research and Applications 13 (2), 141-148 (2005).
19. A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger and A. N. Tiwari, Nat Mater 10 (11), 857-861 (2011).
20. R. Caballero, C. A. Kaufmann, T. Eisenbarth, T. Unold, R. Klenk and H.-W. Schock, Progress in Photovoltaics: Research and Applications 19 (5), 547-551 (2011).
21. K. Herz, F. Kessler, R. Wächter, M. Powalla, J. Schneider, A. Schulz and U. Schumacher, Thin Solid Films 403-404 (0), 384-389 (2002).
22. K. Herz, A. Eicke, F. Kessler, R. Wächter and M. Powalla, Thin Solid Films 431-432 (0), 392-397 (2003).
23. C. Y. Shi, Y. Sun, Q. He, F. Y. Li and J. C. Zhao, Solar Energy Materials and Solar Cells 93 (5), 654-656 (2009).
24. M. Lammer, U. Klemm and M. Powalla, Thin Solid Films 387 (1-2), 33-36 (2001).
25. T. Nakada, H. Ohbo, M. Fukuda and A. Kunioka, Solar Energy Materials and Solar Cells 49 (1-4), 261-267 (1997).
26. D. Rudmann, D. Brémaud, A. F. da Cunha, G. Bilger, A. Strohm, M. Kaelin, H. Zogg and A. N. Tiwari, Thin Solid Films 480-481 (0), 55-60 (2005).
27. K. Granath, M. Bodegård and L. Stolt, Solar Energy Materials and Solar Cells 60 (3), 279-293 (2000).
28. S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai and S. Niki, Applied Physics Letters 93 (12), 124105-124103 (2008).
29. D. Rudmann, D. Bremaud, H. Zogg and A. N. Tiwari, Journal of Applied Physics 97 (8), 084903-084905 (2005).
30. J. H. Yun, K. H. Kim, M. S. Kim, B. T. Ahn, S. J. Ahn, J. C. Lee and K. H. Yoon, Thin Solid Films 515 (15), 5876-5879 (2007).
31. N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami and T. Wada, Solar Energy Materials and Solar Cells 67 (1-4), 209-215 (2001).
32. K. Orgassa, H. W. Schock and J. H. Werner, Thin Solid Films 431-432 (0), 387-391 (2003).
33. J. H. Scofield, A. Duda, D. Albin, B. L. Ballard and P. K. Predecki, Thin Solid Films 260 (1), 26-31 (1995).
34. K. Sakurai, A. Yamada, P. Fons, K. Matsubara, T. Kojima, S. Niki, T. Baba, N. Tsuchimochi, Y. Kimura and H. Nakanishi, Journal of Physics and Chemistry of Solids 64 (9-10), 1877-1880 (2003).
35. Y. Kamikawa-Shimizu, S. Shimada, M. Watanabe, A. Yamada, K. Sakurai, S. Ishizuka, H. Komaki, K. Matsubara, H. Shibata, H. Tampo, K. Maejima and S. Niki, physica status solidi (a) 206 (5), 1063-1066 (2009).
36. J.-H. Yoon, S. Cho, W. M. Kim, J.-K. Park, Y.-J. Baik, T. S. Lee, T.-Y. Seong and J.-h. Jeong, Solar Energy Materials and Solar Cells 95 (11), 2959-2964 (2011).
37. J. Malmstrom, S. Schleussner and L. Stolt, Applied Physics Letters 85 (13), 2634-2636 (2004).
38. S. Y. Guo, W. N. Shafarman and A. E. Delahoy, 2006 (unpublished).
39. S. Schleussner, T. Kubart, T. Törndahl and M. Edoff, Thin Solid Films 517 (18), 5548-5552 (2009).
40. S. Mahieu, W. P. Leroy, K. Van Aeken, M. Wolter, J. Colaux, S. Lucas, G. Abadias, P. Matthys and D. Depla, Solar Energy 85 (3), 538-544 (2011).
41. T. Nakada, Thin Solid Films 480-481 (0), 419-425 (2005).
42. L. M. Woods, A. Kalla, D. Gonzalez and R. Ribelin, Materials Science and Engineering: B 116 (3), 297-302 (2005).
43. P. J. Rostan, J. Mattheis, G. Bilger, U. Rau and J. H. Werner, Thin Solid Films 480-481 (0), 67-70 (2005).
44. S. Seyrling, S. Calnan, S. Bücheler, J. Hüpkes, S. Wenger, D. Brémaud, H. Zogg and A. N. Tiwari, Thin Solid Films 517 (7), 2411-2414 (2009).
45. Y. Zhang, X. Yuan, X. Sun, B.-C. Shih, P. Zhang and W. Zhang, Physical Review B 84 (7), 075127 (2011).
46. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Progress in Photovoltaics: Research and Applications 19 (7), 894-897 (2011).
47. C. Persson and A. Zunger, Applied Physics Letters 87 (21), 211904-211903 (2005).
48. C. Persson and A. Zunger, Physical Review Letters 91 (26), 266401 (2003).
49. U. Rau, K. Taretto and S. Siebentritt, Applied Physics A: Materials Science & Processing 96 (1), 221-234 (2009).
50. C. S. Jiang, R. Noufi, J. A. AbuShama, K. Ramanathan, H. R. Moutinho, J. Pankow and M. M. Al-Jassim, Applied Physics Letters 84 (18), 3477-3479 (2004).
51. S. Sadewasser, T. Glatzel, S. Schuler, S. Nishiwaki, R. Kaigawa and M. C. Lux-Steiner, Thin Solid Films 431–432 (0), 257-261 (2003).
52. D. Azulay, I. Balberg and O. Millo, Physical Review Letters 108 (7), 076603 (2012).
53. H. Mönig, Y. Smith, R. Caballero, C. A. Kaufmann, I. Lauermann, M. C. Lux-Steiner and S. Sadewasser, Physical Review Letters 105 (11), 116802 (2010).
54. C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho and M. M. Al-Jassim, Applied Physics Letters 85 (13), 2625-2627 (2004).
55. T. S. S. Nishiwaki, S. Hayashi, Y. Hashimoto, T. Negami and T. Wada J. Mater. Res. 14 (12), 4514-4520 (1999).
56. J. S. Park, Z. Dong, S. Kim and J. H. Perepezko, Journal of Applied Physics 87 (8), 3683-3690 (2000).
57. J. Song, S. S. Li, C. H. Huang, O. D. Crisalle and T. J. Anderson, Solid-State Electronics 48 (1), 73-79 (2004).
58. H. Chia-Hua, Journal of Physics and Chemistry of Solids 69 (2–3), 779-783 (2008).
59. D. Schmid, M. Ruckh, F. Grunwald and H. W. Schock, Journal of Applied Physics 73 (6), 2902-2909 (1993).
60. C.-S. Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero and M. M. Al-Jassim, Applied Physics Letters 82 (1), 127-129 (2003).
61. O. Lundberg, M. Edoff and L. Stolt, Thin Solid Films 480–481 (0), 520-525 (2005).
62. T. Negami, Y. Hashimoto and S. Nishiwaki, Solar Energy Materials and Solar Cells 67 (1–4), 331-335 (2001).
63. K. K. Nanda, S. N. Sarangi, S. Mohanty and S. N. Sahu, Thin Solid Films 322 (1–2), 21-27 (1998).
64. S. Susanne, Solar Energy 77 (6), 767-775 (2004).
65. D. Hariskos, S. Spiering and M. Powalla, Thin Solid Films 480-481 (0), 99-109 (2005).
66. N. Naghavi, D. Abou-Ras, N. Allsop, N. Barreau, S. Bücheler, A. Ennaoui, C. H. Fischer, C. Guillen, D. Hariskos, J. Herrero, R. Klenk, K. Kushiya, D. Lincot, R. Menner, T. Nakada, C. Platzer-Björkman, S. Spiering, A. N. Tiwari and T. Törndahl, Progress in Photovoltaics: Research and Applications 18 (6), 411-433 (2010).
67. K. O. V. J. Kessler, M. Ruchk, R. Lainchiger, H.W. Schock, D. Lincot, R. Ortega and J. Vedel, Proceedings of the International PVSEC-6 (New Delhi), 1005-1010 (1992).
68. T. Nakada and A. Kunioka, Applied Physics Letters 74 (17), 2444-2446 (1999).
69. T. Nakada, M. Mizutani, Y. Hagiwara and A. Kunioka, Solar Energy Materials and Solar Cells 67 (1-4), 255-260 (2001).
70. J. Serhan, Z. Djebbour, W. Favre, A. Migan-Dubois, A. Darga, D. Mencaraglia, N. Naghavi, G. Renou, J. F. Guillemoles and D. Lincot, Thin Solid Films 519 (21), 7606-7610 (2011).
71. J. Serhan, Z. Djebbour, A. Darga, D. Mencaraglia, N. Naghavi, G. Renou, D. Lincot and J. F. Guillemeoles, Solar Energy Materials and Solar Cells 94 (11), 1884-1888 (2010).
72. K. Katsumi, Solar Energy 77 (6), 717-724 (2004).
73. K. Ernits, D. Brémaud, S. Buecheler, C. J. Hibberd, M. Kaelin, G. Khrypunov, U. Müller, E. Mellikov and A. N. Tiwari, Thin Solid Films 515 (15), 6051-6054 (2007).
74. U. Rau and M. Schmidt, Thin Solid Films 387 (1–2), 141-146 (2001).
75. Y. Nagoya, B. Sang, Y. Fujiwara, K. Kushiya and O. Yamase, Solar Energy Materials and Solar Cells 75 (1–2), 163-169 (2003).
76. N. F. Cooray, K. Kushiya, A. Fujimaki, I. Sugiyama, T. Miura, D. Okumura, M. Sato, M. Ooshita and O. Yamase, Solar Energy Materials and Solar Cells 49 (1–4), 291-297 (1997).
77. R. Scheer, L. Messmann-Vera, R. Klenk and H. W. Schock, Progress in Photovoltaics: Research and Applications, n/a-n/a (2011).
78. M. Bär, C. H. Fischer, H. J. Muffler, S. Zweigart, F. Karg and M. C. Lux-Steiner, Solar Energy Materials and Solar Cells 75 (1–2), 101-107 (2003).
79. S. Ishizuka, K. Sakurai, A. Yamada, K. Matsubara, P. Fons, K. Iwata, S. Nakamura, Y. Kimura, T. Baba, H. Nakanishi, T. Kojima and S. Niki, Solar Energy Materials and Solar Cells 87 (1–4), 541-548 (2005).
80. A. V. Singh, R. M. Mehra, A. Yoshida and A. Wakahara, Journal of Applied Physics 95 (7), 3640-3643 (2004).
81. Y. Hagiwara, T. Nakada and A. Kunioka, Solar Energy Materials and Solar Cells 67 (1–4), 267-271 (2001).
82. A. Gupta and A. D. Compaan, Applied Physics Letters 85 (4), 684-686 (2004).
83. J.-P. Lin and J.-M. Wu, Applied Physics Letters 92 (13), 134103-134103 (2008).
84. J. K. Sheu, K. W. Shu, M. L. Lee, C. J. Tun and G. C. Chi, Journal of The Electrochemical Society 154 (6), H521-H524 (2007).
85. C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech and M. Wuttig, Journal of Applied Physics 95 (4), 1911-1917 (2004).
86. S. Calnan and A. N. Tiwari, Thin Solid Films 518 (7), 1839-1849 (2010).
87. K. U. Sim, S. W. Shin, A. V. Moholkar, J. H. Yun, J. H. Moon and J. H. Kim, Current Applied Physics 10 (3, Supplement), S463-S467 (2010).
88. P. F. Newhouse, C. H. Park, D. A. Keszler, J. Tate and P. S. Nyholm, Applied Physics Letters 87 (11), 112108-112103 (2005).
89. M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins, D. S. Ginley and M. P. Taylor, Applied Physics Letters 87 (3), 032111-032113 (2005).
90. T. Koida and M. Kondo, Applied Physics Letters 89 (8), 082104-082103 (2006).
91. S. Parthiban, K. Ramamurthi, E. Elangovan, R. Martins and E. Fortunato, Applied Physics Letters 94 (21), 212101-212103 (2009).
92. S. Kijima and T. Nakada, Applied Physics Express 1 (7), 075002 (2008).
93. A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi and A. M. Hermann, Applied Physics Letters 65 (2), 198-200 (1994).
94. J. R. Tuttle, M. Contreras, M. H. Bode, D. Niles, D. S. Albin, R. Matson, A. M. Gabor, A. Tennant, A. Duda and R. Noufi, Journal of Applied Physics 77 (1), 153-161 (1995).
95. A. Rockett, F. Abou-Elfotouh, D. Albin, M. Bode, J. Ermer, R. Klenk, T. Lommasson, T. W. F. Russell, R. D. Tomlinson, J. Tuttle, L. Stolt, T. Walter and T. M. Peterson, Thin Solid Films 237 (1–2), 1-11 (1994).
96. R. Klenk, T. Walter, H.-W. Schock and D. Cahen, Advanced Materials 5 (2), 114-119 (1993).
97. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Bätzner, F. J. Haug, M. Kälin, D. Rudmann and A. N. Tiwari, Progress in Photovoltaics: Research and Applications 12 (2-3), 93-111 (2004).
98. M. Powalla and B. Dimmler, Solar Energy Materials and Solar Cells 75 (1–2), 27-34 (2003).
99. M. Powalla and B. Dimmler, Solar Energy Materials and Solar Cells 67 (1–4), 337-344 (2001).
100. M. Marudachalam, R. W. Birkmire, H. Hichri, J. M. Schultz, A. Swartzlander and M. M. Al-Jassim, Journal of Applied Physics 82 (6), 2896-2905 (1997).
101. G. S. Chen, J. C. Yang, Y. C. Chan, L. C. Yang and W. Huang, Solar Energy Materials and Solar Cells 93 (8), 1351-1355 (2009).
102. R. Caballero, C. Guillén, M. T. Gutiérrez and C. A. Kaufmann, Progress in Photovoltaics: Research and Applications 14 (2), 145-153 (2006).
103. A. Kampmann, V. Sittinger, J. Rechid and R. Reineke-Koch, Thin Solid Films 361–362 (0), 309-313 (2000).
104. D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, Solar Energy 77 (6), 725-737 (2004).
105. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada and M. Konagai, physica status solidi (a) 203 (11), 2593-2597 (2006).
106. M. Kaelin, D. Rudmann, F. Kurdesau, H. Zogg, T. Meyer and A. N. Tiwari, Thin Solid Films 480–481 (0), 486-490 (2005).
107. C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot and A. N. Tiwari, Progress in Photovoltaics: Research and Applications 18 (6), 434-452 (2010).
108. M. Kaelin, D. Rudmann and A. N. Tiwari, Solar Energy 77 (6), 749-756 (2004).
109. K. Katsumi, Solar Energy Materials and Solar Cells 93 (6–7), 1037-1041 (2009).
110. H. Sugimoto, T. Yagioka, M. Nagahashi, Y. Yasaki, Y. Kawaguchi, T. Morimoto, Y. Chiba, T. Aramoto, Y. Tanaka, H. Hakuma, K. S. and K. and Kushiya, in 37th IEEE PVSC (Seattle, Washington 2011).
111. S. Niki, M. Contreras, I. Repins, M. Powalla, K. Kushiya, S. Ishizuka and K. Matsubara, Progress in Photovoltaics: Research and Applications 18 (6), 453-466 (2010).
112. V. Alberts, Jpn. J. Appl. Phys. 41, 518-523 (2002).
113. J. A. Thornton and T. C. Lommasson, Solar Cells 16 (0), 165-180 (1986).
114. K. Ellmer, J. Hinze and J. Klaer, Thin Solid Films 413 (1–2), 92-97 (2002).
115. J. Piekoszewski, J. J. Loferski, R. Beaulieu, J. Beall, B. Roessler and J. Shewchun, Solar Energy Materials 2 (3), 363-372 (1980).
116. N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio and L. Zanotti, Solar Cells 16 (0), 155-164 (1986).
117. J. L. Hernandez-Rojas, M. L. Lucia, I. Martil, J. Santamaria, G. Gonzalez-Diaz and F. Sanchez-Quesada, Applied Physics Letters 60 (15), 1875-1877 (1992).
118. T. Yamaguchi, J. Matsufusa and A. Yoshida, Journal of Applied Physics 72 (12), 5657-5662 (1992).
119. J. L. Hernandez-Rojas, M. L. Lucia, I. Martil, G. Gonzalez-Diaz, J. Santamaria and F. Sanchez-Quesada, Applied Physics Letters 64 (10), 1239-1241 (1994).
120. T. Tanaka, Y. Demizu, A. Yoshida and T. Yamaguchi, Journal of Applied Physics 81 (11), 7619-7622 (1997).
121. S. Karthikeyan, A. E. Hill, R. D. Pilkington, J. S. Cowpe, J. Hisek and D. M. Bagnall, Thin Solid Films 519 (10), 3107-3112 (2011).
122. J. H. Shi, Z. Q. Li, D. W. Zhang, Q. Q. Liu, Z. Sun and S. M. Huang, Progress in Photovoltaics: Research and Applications 19 (2), 160-164 (2011).
123. S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai and S. Niki, Current Applied Physics 10 (2, Supplement), S154-S156 (2010).
124. R. Caballero, C. A. Kaufmann, T. Eisenbarth, M. Cancela, R. Hesse, T. Unold, A. Eicke, R. Klenk and H. W. Schock, Thin Solid Films 517 (7), 2187-2190 (2009).
125. R. Wuerz, A. Eicke, F. Kessler, P. Rogin and O. Yazdani-Assl, Thin Solid Films 519 (21), 7268-7271 (2011).
126. M. Lammer, U. Klemm and M. Powalla, Thin Solid Films 387 (1–2), 33-36 (2001).
127. D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg and A. N. Tiwari, Thin Solid Films 431–432 (0), 37-40 (2003).
128. D. Rudmann, A. F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, A. N. Tiwari and G. Bilger, Applied Physics Letters 84 (7), 1129-1131 (2004).
129. A. Rockett, J. S. Britt, T. Gillespie, C. Marshall, M. M. Al Jassim, F. Hasoon, R. Matson and B. Basol, Thin Solid Films 372 (1–2), 212-217 (2000).
130. L. Kronik, D. Cahen and H. W. Schock, Advanced Materials 10 (1), 31-36 (1998).
131. D. W. Niles, M. Al-Jassim and K. Ramanathan, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 (1), 291-296 (1999).
132. Y. Yan, C. S. Jiang, R. Noufi, S.-H. Wei, H. R. Moutinho and M. M. Al-Jassim, Physical Review Letters 99 (23), 235504 (2007).
133. R. Schlesiger, C. Oberdorfer, R. Wurz, G. Greiwe, P. Stender, M. Artmeier, P. Pelka, F. Spaleck and G. Schmitz, Review of Scientific Instruments 81 (4), 043703-043708 (2010).
134. F. Couzinie-Devy, E. Cadel, N. Barreau, L. Arzel and P. Pareige, Applied Physics Letters 99 (23), 232108-232103 (2011).
135. E. Cadel, N. Barreau, J. Kessler and P. Pareige, Acta Materialia 58 (7), 2634-2637 (2010).
136. O. Cojocaru-Mirédin, P. Choi, R. Wuerz and D. Raabe, Ultramicroscopy 111 (6), 552-556 (2011).
137. T. Nakada, D. Iga, H. Ohbo and A. Kunioka, Japanese Journal of Applied Physics 36 (Part 1, No. 2), 732-737 (1997).
138. T. Nakada, H. Ohbo, M. Fukuda and A. Kunioka, Solar Energy Materials and Solar Cells 49 (1–4), 261-267 (1997).
139. R. Kimura, T. Mouri, T. Nakada, S. Niki, A. Yamada, P. Fons, T. Matsuzawa, K. Takahashi and A. Kunioka, Jpn. J. Appl. Phys. 38, 3 (1999).
140. S. Ishizuka, A. Yamada, M. M. Islam, H. Shibata, P. Fons, T. Sakurai, K. Akimoto and S. Niki, Journal of Applied Physics 106 (3), 034908-034906 (2009).
141. M. Bodeg Ård, K. Granath and L. Stolt, Thin Solid Films 361–362 (0), 9-16 (2000).
142. W. C. Lim, J. Lee, S. Won and Y. Lee, Surface and Interface Analysis, n/a-n/a (2012).
143. R. Sakdanuphab, C. Chityuttakan, A. Pankiew, N. Somwang, K. Yoodee and S. Chatraphorn, Journal of Crystal Growth 319 (1), 44-48 (2011).
144. S. Ye, X. Tan, M. Jiang, B. Fan, K. Tang and S. Zhuang, Appl. Opt. 49 (9), 1662-1665 (2010).
145. L. Zhang, F.-f. Liu, F.-y. Li, Q. He, B.-z. Li and C.-j. Li, Solar Energy Materials and Solar Cells 99 (0), 356-361 (2012).
146. L. Zhang, Q. He, W.-L. Jiang, F.-F. Liu, C.-J. Li and Y. Sun, Solar Energy Materials and Solar Cells 93 (1), 114-118 (2009).
147. S. Ishizuka, A. Yamada, H. Shibata, P. Fons, K. Sakurai, K. Matsubara and S. Niki, Solar Energy Materials and Solar Cells 93 (6–7), 792-796 (2009).
148. P. Jackson, R. Würz, U. Rau, J. Mattheis, M. Kurth, T. Schlötzer, G. Bilger and J. H. Werner, Progress in Photovoltaics: Research and Applications 15 (6), 507-519 (2007).
149. X. H. Tan, S. L. Ye, B. Fan, K. Tang and X. Liu, Appl. Opt. 49 (16), 3071-3074 (2010).
150. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, Progress in Photovoltaics: Research and Applications 7 (4), 311-316 (1999).
151. D. H. Shin, Y. M. Shin, J. H. Kim, B. T. Ahn and K. H. Yoon, Journal of The Electrochemical Society 159 (1), B1-B5 (2012).
152. N. Ott, G. Hanna, U. Rau, J. H. Werner and H. P. Strunk, Journal of Physics: Condensed Matter 16 (2), S85 (2004).
153. M. A. Contreras, M. J. Romero and R. Noufi, Thin Solid Films 511–512 (0), 51-54 (2006).
154. M. A. Contreras, B. Egaas, D. King, A. Swartzlander and T. Dullweber, Thin Solid Films 361–362 (0), 167-171 (2000).
155. G. Hanna, J. Mattheis, V. Laptev, Y. Yamamoto, U. Rau and H. W. Schock, Thin Solid Films 431–432 (0), 31-36 (2003).
156. Y. M. Shin, D. H. Shin, J. H. Kim and B. T. Ahn, Current Applied Physics 11 (1, Supplement), S59-S64 (2011).
157. P.-P. Choi, O. Cojocaru-Miredin, R. Wuerz and D. Raabe, Journal of Applied Physics 110 (12), 124513-124517 (2011).
158. P. T. Erslev, W. N. Shafarman and J. D. Cohen, Applied Physics Letters 98 (6), 062105-062103 (2011).
159. P. T. Erslev, J. W. Lee, W. N. Shafarman and J. D. Cohen, Thin Solid Films 517 (7), 2277-2281 (2009).
160. R. Caballero, C. A. Kaufmann, T. Eisenbarth, A. Grimm, I. Lauermann, T. Unold, R. Klenk and H. W. Schock, Applied Physics Letters 96 (9), 092104-092103 (2010).
161. D. Mori and K. Yamada, Journal of Advanced Concrete Technology 5 (3), 285-298 (2007).
162. G. Voorwinden, R. Kniese and M. Powalla, Thin Solid Films 431–432 (0), 538-542 (2003).
163. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Progress in Photovoltaics: Research and Applications 19 (5), 565-572 (2011).
164. J. L. Hernandez-Rojas, M. L. Lucia, I. Martil, J. Santamaria, G. Gonzalez-Diaz and F. Sanchez-Quesada, Applied Physics Letters 60 (15), 1875-1877 (1992).
165. C.-H. Chen, W.-C. Shih, C.-Y. Chien, C.-H. Hsu, Y.-H. Wu and C.-H. Lai, Solar Energy Materials and Solar Cells 103, 25-29 (2012).
166. J. Im, O. Auciello, P. K. Baumann, S. K. Streiffer, D. Y. Kaufman and A. R. Krauss, Applied Physics Letters 76 (5), 625-627 (2000).
167. S. Niki, P. J. Fons, A. Yamada, Y. Lacroix, H. Shibata, H. Oyanagi, M. Nishitani, T. Negami and T. Wada, Applied Physics Letters 74 (11), 1630-1632 (1999).
168. S. Seyrling, A. Chirila, D. Güttler, F. Pianezzi, P. Rossbach and A. N. Tiwari, Thin Solid Films 519 (21), 7232-7236 (2011).
169. T. Mise and T. Nakada, Solar Energy Materials and Solar Cells 93 (6–7), 1000-1003 (2009).
170. V. Izquierdo-Roca, E. Saucedo, C. M. Ruiz, X. Fontané, L. Calvo-Barrio, J. Álvarez-Garcia, P.-P. Grand, J. S. Jaime-Ferrer, A. Pérez-Rodríguez, J. R. Morante and V. Bermudez, physica status solidi (a) 206 (5), 1001-1004 (2009).
171. J. A. Thornton, Journal of Vacuum Science and Technology 11 (4), 666-670 (1974).
172. H. Du, C. H. Champness and I. Shih, Thin Solid Films 480–481 (0), 37-41 (2005).
173. M. Nerat, G. Cernivec, F. Smole and M. TopiC, Journal of Applied Physics 104 (8), 083706-083708 (2008).
174. K. Taretto and U. Rau, Journal of Applied Physics 103 (9), 094523-094511 (2008).
175. S. M. Schleussner, T. Törndahl, M. Linnarsson, U. Zimmermann, T. Wätjen and M. Edoff, Progress in Photovoltaics: Research and Applications, n/a-n/a (2011).
176. I. M. Thomas, Appl. Opt. 31 (28), 6145-6149 (1992).
177. C. L. Perkins, B. Egaas, I. Repins and B. To, Applied Surface Science 257 (3), 878-886 (2010).
178. Y. Hashimoto, N. Kohara, T. Negami, M. Nishitani and T. Wada, Jpn. J. Appl. Phys. 35 (Part 1, No. 9A), 4760-4764 (1996).
179. Y.-C. Lin and J.-G. Duh, Scripta Materialia 54 (9), 1661-1665 (2006).
180. J. H. Schön, V. Alberts and E. Bucher, Thin Solid Films 301 (1–2), 115-121 (1997).
181. S. Zott, K. Leo, M. Ruckh and H. W. Schock, Applied Physics Letters 68 (8), 1144-1146 (1996).
182. S. B. Zhang, S.-H. Wei, A. Zunger and H. Katayama-Yoshida, Physical Review B 57 (16), 9642-9656 (1998).
183. S. Zott, K. Leo, M. Ruckh and H. W. Schock, Journal of Applied Physics 82 (1), 356-367 (1997).
184. I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl and F. Karg, Journal of Applied Physics 85 (3), 1423-1428 (1999).
185. O. Ka, H. Alves, I. Dirnstorfer, T. Christmann and B. K. Meyer, Thin Solid Films 361–362 (0), 263-267 (2000).
186. C. Domain, S. Laribi, S. Taunier and J. F. Guillemoles, Journal of Physics and Chemistry of Solids 64 (9–10), 1657-1663 (2003).
187. P. S. Vasekar and N. G. Dhere, Solar Energy Materials and Solar Cells 93 (1), 69-73 (2009).
188. Z. Fan, H. Razavi, J.-w. Do, A. Moriwaki, O. Ergen, Y.-L. Chueh, P. W. Leu, J. C. Ho, T. Takahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager and A. Javey, Nat Mater 8 (8), 648-653 (2009).
189. S. A. Boden and D. M. Bagnall, Applied Physics Letters 93 (13), 133108-133103 (2008).
190. C. Haase and H. Stiebig, Applied Physics Letters 91 (6), 061116-061113 (2007).
191. H. L. Chen, S. Y. Chuang, C. H. Lin and Y. H. Lin, Opt. Express 15 (22), 14793-14803 (2007).
192. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, LiuW and J. A. Smart, Nat Photon 1 (3), 176-179 (2007).
193. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen and L.-C. Chen, Nat Nano 2 (12), 770-774 (2007).
194. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, Nano Letters 9 (1), 279-282 (2008).
195. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan and Y. Cui, Nano Letters 10 (6), 1979-1984 (2009).
196. B. M. Kayes, H. A. Atwater and N. S. Lewis, Journal of Applied Physics 97 (11), 114302-114311 (2005).