研究生: |
張成鈺 Cherng-Yuh Chang |
---|---|
論文名稱: |
計算排列中值的改良式分支及限制演算法 Improved Branch And Bound Algorithm For Computing Median Permutation By Block-Interchange |
指導教授: |
唐傳義
Chuan-Yi Tang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 38 |
中文關鍵詞: | 區塊交換 、中值 、排列 、分支及限制 |
外文關鍵詞: | block-interchange, median, permutation, branch and bound |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
生物演化的過程是奇妙的,長久以來人們為了解開生命的奧祕而發展了許多的理論和技術。演化樹訴說了物種演進的過程,我們以基因或蛋白質序列的操作距離為作為依據,建立物種之間可能的演化樹,進而分析物種之間演化的關係。發生在序列的操作(operation)有許多種,包括插入(insertion),刪除(deletion),取代(substitution),乃至於較大片斷(large fragment)的操作有反轉(reversal),置換(transposition),易位(translocation),區塊交換(block-interchange)等多種。建立演化樹其重要的一環是找出物種之間共同的祖先(ancestor),對應於演算法即中值問題(median problem)。以反轉操作為基礎的中值問題已被證明屬於NP-Complete,面對較新的區塊交換操作,中值問題尚未被證明其問題的複雜度,乃至於此,我們改善C. Siepel等人在反轉操為基礎的中值問題所提出的分支及限制演算法(branch and bound)架構,在搜尋的過程中憑藉Cycle-Graph與Breakpoints的特性,試圖先找尋那些共同位在兩段路徑上的點,並使用在區塊操作的中值問題,發現其效率比僅使用單純的分支及限制演算法還要好。
Abstract
DNA, RNA and protein sequences have helped us to understand the evolutionary relationship between organisms. There are various operations in genome rearrangement problem, including insertions, deletions, substitutions, reversals, transpositions, translocations, transreversals, fissions, fusions, and block-interchange.
Dobzhansky and Sturtevant [10] first proposed that degree to gene orders differ between species could be useful to phylogenetic inference in 1938. One of the important problems is median problem. The inversion median was proved NP-Complete problem, as to block-interchange median is a NP-Complete is still open. We use the same branch-and-bound architecture proposed by Adam C. Siepel et al. and improve it to solve the block-interchange median with the two properties associated with cycle-graph and common breakpoints. We get a better result with improved branch-and-bound algorithm than pure branch-and-bound architecture algorithm in dealing with block-interchange median problem.
Reference
[1] David A. Christie, Sorting permutations by block-interchanges, Information Processing Letters 60 (1996) 165-169
[2] Y.C. Lin, C.L. Lu*, H.-Y. Chang and C.Y. Tang (2005), “An Efficient Algorithm for Sorting by Block-Interchanges and Its Application to the Evolution of Vibrio Species”, Journal of Computational Biology, Vol. 12, No. 1, pp. 102-112.
[3] Adam C. Siepel and Bernard M.E Moret, “Finding an Optimal Inversion Median: Experimental Results”, International Workshop on Algorithms in Bioinformatics (WABI), 2001
[4] V. Bafna and P.A. Pevzner, “Sorting by transpositions”, in Proc. 6thAnn. ACM-SIAM Symp. On Discrete Algorithms (1995) 614-623
[5] Pe'er, I., and Shamir, R., “The median problems for breakpoints are NP-complete”, Elec. Colloq. on Comput. Complexity, Report 71, 1998.
[6] C. de la Higuera and F. Casacuberta, “Topology of strings: {Median} string is {NP}-complete”, Theoretical Computer Science, Vol. 230, No.1—2, pp. 39—48, 2000.
[7] David A. Bader and Bernard M. E. Moret and Mi Yan, “A Linear Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study”, Journal of Comp. Biol., Vol. 8, No. 5, pp. 483-491, 2001.
[8] David Sankoff and Mathieu Blanchette, ”Multiple Genome Rearrangement”, RECOMB, 1998.
[9] ALBERTO CAPRARA, ”Additive Bounding, Worst-Case Analysis, and the Breakpoint Median Problem”, SIAM Journal on Optimization, Vol. 13, No. 2, pp. 508-519, 2002.
[10] T. Dobzhansky and A.Sturtevant. “Inversions in the chromosomes of Drosophila pseudoobscura”, Genetics, 23:28-64, 1938.
[11] G. Watterson, W. Ewens, and T. Hall. “The chromosome inversion problem” Journal of Theoretical Biology, 99:1-7, 1982
[12] A. Caprara, “Sorting by reversal is difficult”, Proceedings of the 1th Annual International Conference on Research in Computational Molecular Biology (RECOMB 1997) ACM Press, 1997, pp. 75-83.
[13] P. Berman, S. Hannenhalli and M. Karpinski, “1.375-approximation algorithm for sorting by reversals”, in: R.H. Mohring and R. Raman, eds., Proceedings of the 10th Annual European Symposium on Algorithms (ESA2002), Lecture Notes in Computer Science, Springer-Verlag, Vol. 2461, 2002, pp. 200–210.
[14] S. Hannenhalli and P.A. Pevzner, “Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals”, Journal of the ACM, 46 (1999) 1–27.
[15] V. Bafna and P. Pevzer, “Genome rearrangements and sorting by reversals”, SIAM J. Comput., 25, pp. 272-289, 1996.
[16] J. Kececioglu and D. Sankoff, “Exact and approximation algorithms for the inversion distance between two permutations”, Algorithmica, 13, pp. 180-210, 1995.
[17] Kaplan, H., Shamir, R., and Tarjan, R. “Faster and Simpler Algorithm for Sorting Signed Permutations by Reversals” In Proceedings of the 8th Annual Symposium on Discrete Algorithms (SODA97), 344-351. ACM Press.
[18] Tzvika Hartman.“A Simpler 1.5-Approximation Algorithm for Sorting By Transpositions.” url = "citeseer.nj.nec.com/hartman03simpler.html".
[19] J.D. Kececioglu and R. Ravi, “Of mice and men: algorithms for evolutionary distances between genomes with translocation”, in: Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms (SODA1995), ACM/SIAM, 1995, pp. 604-613.
[20] S. Hannenhalli, “Polynomial algorithm for computing translocation distance between genomes”, Discrete Applied Mathematics, 71 (1996) 137–151.
[21] M. Blanchette, G. Bourque, and D. Sankoff.. Breakpoint phylogenies. In S. Miyanoand T. Takagi, editors, Genome Informatics 1997, pp. 25–34. Univ. Academy Press, 1997.
[22] D. Sankoff. and M. Blanchette. Multiple genome rearrangement and breakpoint phylogeny. J. Comp. Biol., 5:555–570, 1998.