簡易檢索 / 詳目顯示

研究生: 張毓華
Chang, Yuh-Hwa
論文名稱: 利用氮化銦磊晶超薄膜製作之氫氣感測器
Hydrogen Gas Sensors Using Ultrathin InN Epilayers
指導教授: 葉哲良
Yeh, J. Andrew
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 氮化銦氫氣氣體感測器
外文關鍵詞: indium nitrite, InN, hydrogen, gas sensor, Pt
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文討論以約10奈米磊晶氮化銦(indium nitrite)超薄膜製成之電阻式氫氣感測器之偵測反應特性,並比較氮化銦裸面與氮化銦表面鍍上一層白金(Pt)薄膜於偵測反應上的差異。裸面銦極化(In-polar)之氮化銦感測器在空氣或氮氣的環境中,當溫度升高至150度時,開始對氫氣有反應,而於225度時有最大的反應。在溫度225度、空氣(氮氣)的環境中,1000 ppm氫氣會造成電阻下降16.2歐姆(4.6歐姆),對應之電流變化率為6.6%(2.5%),反應時間為182秒(620秒),電流變化的對數與氫氣濃度(50-10000 ppm)的對數呈現線性關係,其斜率為0.69。在氮氣的環境中,可推導出氫氣吸附於銦極化之氮化銦表面之活性能於溫度區間150度至250度為0.91 eV。另外,裸面氮極化(N-polar)之氮化銦感測器在不同溫度及不同氫氣濃度下,與銦極化之感測器有極相似的反應特性,這樣的結果可能與氮化銦表面的銦吸附層(In adlayer)有關。因為不論銦極化或氮極化的氮化銦表面的穩定重構結構,皆存在一銦吸附層,而此最表面之銦吸附層主宰氫氣感測反應行為。另一方面,白金催化之銦極化氮化銦感測器對氫氣反應所需的溫度顯著地降低,且反應之電流變化顯著地提升。即使在室溫、空氣中,1000 ppm 氫氣即會造成64%的電流變化率,當溫度升高至150度、同樣的氣體環境下,電流變化率上升至177%,反應及回復時間分別為134及296秒。相較於裸面之銦極化氮化銦感測器於同樣溫度及氫氣濃度下,白金催化增進電流變化值約635倍。同時,於此溫度下,氫氣偵測極限濃度小於5 ppm,電流變化的對數與氫氣濃度(5-2000 ppm)的對數呈現線性關係,其斜率為0.74。感測器之氫氣吸附活性能於溫度區間25度至150度為0.31 eV。另外,白金催化之氮極化氮化銦感測器對1000 ppm氫氣,在不同溫度、空氣中,與白金催化之銦極化氮化銦感測器有相似的反應特性。但是,感測器對不同濃度氫氣的反應則相當不同,其電流變化的對數與氫氣濃度(50-2000 ppm)的對數的斜率明顯較高,為1.34,此乃由於在低濃度氫氣中(<=250 ppm),其反應顯著偏低所造成。然而,整體來說,相較於裸面氮化銦感測器,白金催化的氮化銦感測器對於氫氣有如此靈敏的反應,可能與由白金催化產生的氫原子擴散進入氮化銦表面附近形成施子(donor),進而增加表面的導電電流有關。在氮氣的環境中,白金催化之銦極化氮化銦感測器由於缺乏氧去消耗白金催化產生之氫原子,故其對氫氣的反應速率遠較於空氣的環境中快,且反應的電流變化也顯著地提升。例如,於溫度150度時,對100 ppm氫氣反應時間僅為14秒,且有170%電流變化率,接近飽和變化值。然而,也由於缺乏氧去消耗氫原子,即使氫氣關掉後,氫原子於氮氣的環境中也會存在白金內部一段時間,因而造成其恢復時間相當長。


    Hydrogen gas (H2) sensors based on ultrathin (~10 nm) indium nitride (InN) epilayers with and without a thin catalytic platinum (Pt) layer atop have been fabricated and demonstrated. The bare In-polar InN sensor exhibits a detectable response to hydrogen at temperature of >=150 C and a maximum response at 225 C in both air and N2 ambiences. The maximum response of resistance variation under 1000 ppm H2 exposure in air (N2) ambience at 225 C is 16.2 ohm (4.6 ohm), corresponding to a variation ratio of 6.1% (2.5%), with a response time of 182 s (620 s). The plot of log (DI) vs. log (concentration of H2) reveals a linear relationship with a slope of 0.69 at a wide H2 concentration range from 50 ppm to 10000 ppm (1%) in air ambience. The hydrogen adsorption activation energy for the In-polar InN surface in N2 ambience at the temperature range from 150 C to 250 C is derived to be 0.91 eV. Moreover, the bare N-polar InN sensor exhibits a very similar response to its In-polar counterpart at various temperatures (150-250 C) and at different H2 concentrations (50-10000 ppm) in both air and N2 ambiences. The similar response to hydrogen for bare InN sensors with different InN polarities was explained as a result of the formation of an In-adlayer at InN reconstructed surfaces regardless of their polarities, which dominates the hydrogen sensing behavior. On the other hand, the Pt-coated In-polar InN sensor exhibits a much higher response to hydrogen even at lower temperatures (<=150 C). At room temperature, the current variation ratio of 64% is observed while exposed to 1000 ppm H2/air. At 150 C, the sensor shows a high current variation ratio of 177% and a short response/recovery time of 134 s/358 s under the same gas exposure environment. In comparison with a bare In-polar InN sensor tested in the same conditions, the Pt catalytic layer enhances the current variation by ~635 times. The detection limit of the sensor is experimentally found to be less than 5 ppm. The linear relationship of log (DI) vs. log (concentration of H2) displays a slope of 0.74 at a H2 concentration range from 5 ppm to 2000 ppm. In addition, the activation energy of the sensor at the temperature range from 25 to 150 C is derived to be 0.31 eV. For the Pt-coated N-polar InN sensor, it exhibits a similar response to its Pt-coated In-polar counterpart upon 1000 ppm H2/air exposure at various temperatures (250-150 C). However, the response to different H2 concentration at 150 C is rather different. The slope of log (DI) vs. log (concentration of H2) is as high as 1.34 at a H2 concentration range from 50 ppm to 2000 ppm due to the lower response at lower H2 concentration (<=250 ppm). The response is much higher than those of catalytic metal-gated HEMT-based H2 sensors operated in a normally-on mode with an unbiased gate under the similar gas exposure conditions. The higher response of hydrogen detection for the Pt-coated InN sensors might be associated with the incorporation of the catalytically active hydrogen atoms into the near-surface region of InN, which will act as donors and thus enhance the surface conduction current. In N2 ambience, due to the absence of oxygen to consume the catalytic hydrogen atoms, the Pt-coated In-polar InN sensor exhibits a much higher and faster response to hydrogen than that tested in air ambience. At 150 C, the response time is 14 s and the current variation ratio is 170% upon 100 ppm H2 exposure, which is close to the saturated response. In the meantime, a slow recovery rate is found because the hydrogen atoms would remain in the Pt bulk for a long time due to the same mechanism (the absence of oxygen to consume the catalytic hydrogen atoms).

    ACKNOWLEDGEMENT............................................I 中文摘要..................................................II ABSTRACT.................................................III CONTENTS..................................................VI TABLE CAPTION.............................................IX FIGURE CAPTION............................................XI LIST OF SYMBOLS..........................................XXI CHAPTER 1 INTRODUCTION.....................................1 1.1 BACKGROUND.............................................1 1.2 SEMICONDUCTOR HYDROGEN GAS SENSORS.....................2 1.2.1 TRANSISTOR-BASED HYDROGEN GAS SENSOR.................2 1.2.2 SCHOTTKY-DIODE-BASED HYDROGEN GAS SENSOR.............6 1.2.3 RESISTIVE HYDROGEN GAS SENSOR........................9 1.3 SURFACE PROPERTIES OF InN.............................12 1.3.1 ELECTRONIC PROPERTIES...............................12 1.3.2 CHEMICAL SENSING PROPERTIES.........................18 1.4 MOTIVATION AND OBJECTIVES.............................19 CHAPTER 2 HYDROGEN SENSING MECHANISM......................24 2.1 RESPONSE TO HYDROGEN FOR BARE InN SURFACES............24 2.2 EFFECTS OF CATALYST...................................29 CHAPTER 3 SENSOR DESIGN, FABRICATION AND CHARACTERIZATIONS.........................................32 3.1 SENSOR DESIGN.........................................32 3.2 GROWTH OF InN EPILAYERS...............................36 3.3 SENSOR FABRICATION....................................41 3.3.1 SENSING DEVICE FABRICATION..........................41 3.3.2 HEATER FABRICATION..................................45 3.3.3 ASSEMBLY AND BONDING................................47 3.4 MEASUREMENT SETUP AND METHODOLOGY.....................48 3.4.1 MEASUREMENT SETUP...................................48 3.4.2 MEASUREMENT METHODOLOGY.............................56 CHAPTER 4 EXPERIMENTAL RESULTS AND DISCUSSION.............59 4.1 CHARACTERIZATIONS OF BARE InN SENSORS.................59 4.1.1 TEMPERATURE EFFECTS IN AIR AMBIANCE.................59 4.1.2 RESPONSE TO DIFFERENT H2 CONCENTRATIONS IN AIR AMBIANCE..................................................63 4.1.3 TEMPERATURE EFFECTS IN NITROGEN AMBIANCE............67 4.1.4 RESPONSE TO DIFFERENT H2 CONCENTRATIONS IN N2 AMBIANCE..................................................74 4.2 CHARACTERIZATIONS OF Pt-COATED InN SENSORS............77 4.2.1 TEMPERATURE EFFECTS IN AIR AMBIANCE.................77 4.2.2 DEPENDENCE OF RESPONSE TIME ON FLOW RATE............86 4.2.3 RESPONSE TO DIFFERENT H2 CONCENTRATIONS IN AIR AMBIANCE..................................................89 4.2.4 TEMPERATURE EFFECTS IN NITROGEN AMBIANCE............93 4.2.5 LONG-TERM STABILITY TEST IN AIR AMBIANCE............96 CHAPTER 5 CONCLUSION......................................98 CHAPTER 6 FUTURE WORK....................................102 REFERENCES...............................................105 CURRICULUM VITAE.........................................114

    [1] G. W. Crabtree and M. S. Dresselhaus, “The hydrogen fuel alternative,” Materials Research Society Bulletin 33, 421-428 (2008).
    [2] Basic considerations for the safety of hydrogen systems, Technical report ISO/TR 15916 (2004).
    [3] I. Lundstrom, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen- sensitive MOS field-effect transistor,” Applied Physics Letters 26(2), 55-57 (1975).
    [4] K. I. Lundstrom, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” Journal of Applied Physics 46(9), 3876-3881 (1975).
    [5] J. Schalwig, G. Muller, M. Eickhoff, O. Ambacher, and M. Stutzmann, “Gas sensitive GaN/AlGaN-heterostructures,” Sensors and Acutators B 87, 425-430 (2002).
    [6] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, C. W. Hong, H. L. Lin, and W. C. Liu, “Study of hydrogen-sensing characteristics of a Pt-oxide-AlGaAs metal-oxide-semiconductor high electron mobility transistor,” Journal of Vacuum Science & Technology B 23(5), 1943-1947 (2005).
    [7] L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new hydrogen gas sensor based on a Pt/GaAs Schottky diode,” Journal of The Electrochemical Society 138(1), 159-162 (1991).
    [8] W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” Journal of Applied Physics 75(12), 8175-8181 (1994).
    [9] T. Kimura, H. Hasegawa, T. Sato, and T. Hashizume, “Sensing Mechanism of InP Hydrogen gas sensors Using Pt Schottky Diodes Formed by Electrochemical Procese,” Japanese Journal of Applied Physics 45, 3414□3422 (2006).
    [10] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen Sensing Pd/InGaP Metal-Semiconductor (MS) Schottky Diode Hydrogen gas sensor,” Semiconductor Society Technology 18, 615-619 (2003).
    [11] V Battut, J. P. Blanc, and C Maleysson, “Gas sensitivity of InP epitaxial thin layers,” Sensors and Actuators B 44, 503□506 (1997).
    [12] D. S. Lee, J. H. Lee, Y. H. Lee and D. D. Lee, “GaN thin films as gas sensors,” Sensors and Actuators B 89, 305-310 (2003).
    [13] F. Yun, S. Chevtchenko, Y. T. Moon, H Morkoc, T. J. Fawcett, and J. T. Wolan, “GaN resistive hydrogen gas sensors,” Applied Physics Letters 87, 073507 (2005).
    [14] T. J. Fawcett, J. T. Wolan, A. L. Spetz, M. Reyes, and S. E. Saddow, “Thermal detection mechanism of SiC based hydrogen resistive gas sensors,” Applied Physics Letters 89, 182102 (2006).
    [15] I. Lundstrom and T. DiStefano, “Hydrogen induced interfacial polarization at Pd□SiO2 interfaces,” Surface Science 59 (1), 23-32 (1976).
    [16] I. Lundstrom and T. DiStefano, “Influence of hydrogen on Pt–SiO2–Si structures,” Solid State Communications 19 (9), 871-875 (1976).
    [17] B. S. Kang, R. Mehandru, S. Kim, F. Ren, R. Fitch, J. Gillespie, N. Moser, G. Jessen, T. Jenkins, R. Dettmer, D. Via, A. Crespo, B.P. Gila, C.R. Abernathy, and S.J. Pearton, “Hydrogen-induced reversible changes in drain current in Sc2O3/AlGaN/GaN high electron mobility transistors,” Applied Physics Letters 84, 4635-4637 (2004).
    [18] X. H. Wang, X. L. Wang, C. Feng, C. B. Yang, B. Z. Wang, J. X. Ran, H. L. Xiao, C. M. Wang, and J. X. Wang, “Hydrogen gas sensors based on AlGaN/AlN/GaN HEMT,” Microelectronics Journal 39, 20-23 (2008).
    [19] S. Nakamura, N. Takahashi, and T. Okumura, “Detection of ppm-order hydrogen gas by Pd/AlGaN/GaN high electron mobility transistor-based sensors,” Physica Status Solidi C, 6(S2), 1053-1055 (2009).
    [20] L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiO2/Si Schottky-barrier-type devices,” Journal of Applied Physics 50, 1535-1537 (1979).
    [21] A. A. Saaman and P. Bergveld, “A classification of chemically sensitive semiconductor devices,” Sensors and Acutators 7 (2), 75-87 (1985).
    [22] M. S. Shivaraman, L. Lundstrom, C. Svensson, and H. Hammarshin, “Hydrogen sensitivity of palladium silicon Schottky barriers,” Electronics Letters 12, 483-484 (1976).
    [23] J. M. Ruths, S. J. Fonash, and T. E. Sullivan, “The effects of hydrogen on palladium metal-oxide-semiconductor structures,” Extended Abstracts□154th Meeting of Electrochemical Society, 78(2), 648-649 (1978).
    [24] B. Keramati and J. N. Zemel, “Confirmation of hydrogen surface states at the Si-SiO2 interface,” The Physics of SiO2 and its Interfaces, ed. ST Pantelides, New York: Pergamon, 459-463 (1978).
    [25] P. F. Ruths, S. Ashok, S. J. Fonash, and J. M. Ruths, “A study of Pd/Si MIS schottky barrier diode hydrogen detector,” IEEE Transactions on Electron Devices 28, 1003-1009 (1981).
    [26] K. Ito, “Hydrogen-sensitive Schottky barrier diodes,” Surface Science 86, 345□352 (1979).
    [27] N. Yamamoto, S. Tonomura, T. Matsuoka, and H. Tsubomura, “A study on a palladium-titanium oxide Schottky diode as a detector for gaseous components,” Surface Science 92, 400-406 (1980).
    [28] M. C. Steele and B. A. MacIver, “Palladium/cadmium-sulfide Schottky diodes for hydrogen detection,” Applied Physics Letters 28, 687-688 (1976).
    [29] H. Kobayashi, K. Kishimoto, Y. Nakato, and H. Tsubomura, “Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes,” Sensors and Actuator B 13, 125-127 (1993).
    [30] W. P. Kang and Y. Gurbuz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” Journal of Applied Physics 75(12), 8175□8181 (1994).
    [31] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensors and Actuators B 56, 164-168 (1999).
    [32] H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semiconductor Science and Technology 18(2), 104-110 (2003).
    [33] Y. L. Wang, B. H. Chu, C. Y. Chang, K. H. Chen, Y. Zhang, Q. Sun, J. Han, S. J. Pearton and F. Ren, “Hydrogen sensing of N-polar and Ga-polar GaN Schottky diodes,” Sensors and Actuators B 142, 175-178 (2009).
    [34] J. E. Northrup and J. Neugebauer, “Strong affinity of hydrogen for the GaN(0001) surface: implications for molecular beam epitaxy and metalorganic chemical vapor deposition,” Applied Physics Letters 85, 3429-3431 (2004).
    [35] M. Mayumi, F. Satoh, Y. Kumagai, K. Takemoto, and A. Koukitu, “Influence of polarity on surface reaction between GaN{0001} and hydrogen,” Physica Status Solidi B 228, 537-541 (2001).
    [36] H. Nanto, T. Minami, and S. Takata, “Zinc‐oxide thin‐film ammonia gas sensors with high sensitivity and excellent selectivity,” Journal of Applied Physics 60, 482-484 (1982).
    [37] P. Mitra, A. P. Chatterjee, and H. S. Maiti, “ZnO thin film sensor,” Materials Letters 35, 33-38 (1998).
    [38] J. Lančok, A. Santoni, M. Penza, S. Loreti, I. Menicucci, C. Minarini, and M. Jelinek, “Tin oxide thin films prepared by laser-assisted metal–organic CVD: Structural and gas sensing properties,” Surface & Coatings Technology 200, 1057-1060 (2005)
    [39] S. Shukla, S. Seal, L. Ludwig, and C. Parish, “Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen gas sensor,” Sensors and Actuators B 97, 256-265 (2004).
    [40] R. K. Sharma, M. C. Bhatnagar, and G. L. Sharma, “Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B 45, 209-215 (1997).
    [41] M. J. Madou and S. R. Morrison, “Chemical sensing with solid state devices,” Academic Press, London, 35-37 (1989).
    [42] I. Kousuke and J. Watson, “The stannic oxide gas sensor: principles and applications,” CRC Press, Boca Raton , FL, 11-16 (2000).
    [43] D. K. Aswal and S. K. Gupta, “Science and technology of of chemiresistor gas sensors,” Nova Science Publishers, New York, 40-47 (2006).
    [44] N. Yamazoea, Y. Kurokawa, and T. Seiyama, “Effects of additives on semiconductor gas sensors,” Sensors and Actuators 4, 283-289 (1983).
    [45] K. Luongo, A. Sine, and S. Bhansali, “Development of a highly sensitive porous Si-based hydrogen gas sensor using Pd nano-structures,” Sensors and Actuators B 111□112, 125-129 (2005).
    [46] Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289-1292 (2001).
    [47] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors,” Science 287, 622-625 (2000).
    [48] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” Journal of Applied Physics 94, 2779-2808 (2003).
    [49] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, “Surface charge accumulation of InN films grown by molecular-beam epitaxy,” Applied Physics Letters 82, 1736-1738 (2003).
    [50] K. A. Rickert, A. B. Ellis, F. J. Himpsel, H. Lu, W. Schaff, J. M. Redwing, F. Dwikusuma, and T. F. Kuech, “X-ray photoemission spectroscopic investigation of surface treatments, metal deposition, and electron accumulation on InN,” Applied Physics Letters 82, 3254-3256 (2003)
    [51] T. D. Veal, I. Mahboob, L. F. J. Piper, C. F. McConville, H. Lu, and W. J. Schaff, “Indium nitride: Evidence of electron accumulation,” Journal of Vacuum Science & Technology B 22(4), 2175-2178 (2004).
    [52] I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, J. Furthmuller, and F. Bechstedt, “Origin of electron accumulation at wurtzite InN surfaces,” Physical Review B 69, 201307 (2004).
    [53] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, “Intrinsic electron accumulation at clean InN surfaces,” Physical Review Letters 92, 036804 (2004).
    [54] C. L. Wu, H. M. Lee, C. T. Kuo, C. H. Chen, and S. Gwo, “Absence of Fermi-level pinning at cleaved nonpolar InN surfaces,” Physical Review Letters 101, 106803 (2008).
    [55] C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature 423, 626-628 (2003).
    [56] S. X. Li, K. M. Yu, J. Wu, R. E. Jones, W. Walukiewicz, J. W. Ager III, W. Shan, E. E. Haller, H. Lu, and W. J. Schaff, “Fermi-level stabilization energy in group III nitrides,” Physical Review B 71, 161201 (2005).
    [57] D. Segev and C. G. Van de Walle, “Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces,” Europhysics Letters 76(2), 305-311 (2006).
    [58] C. G. Van de Walle and D. Segev, “Microscopic origins of surface states on nitride surfaces,” Journal of Applied Physics 101, 081704 (2007).
    [59] P. D. C. King, T. D. Veal, C. F. McConville, F. Fuchs, J. Furthmuller, F. Bechstedt, P. Schley, R. Goldhahn, J. Schormann, D. J. As, K. Lischka, D. Muto, H. Naoi, Y. Nanishi, H. Lu, and W. J. Schaff, “Universality of electron accumulation at wurtzite c-and a-plane and zinc-blende InN surfaces,” Applied Physics Letters 91, 092101 (2007).
    [60] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-type doping of InN,” Physical Review Letters 96, 125505 (2006).
    [61] V. Cimalla, V. Lebedev, C. Y. Wang, M. Ali, G. Ecke, V. M. Polyakov, F. Schwierz, O. Ambacher, H. Lu, and W. J. Schaff, “Reduced surface electron accumulation at InN films by ozone induced oxidation,” Applied Physics Letters 90, 152106 (2007).
    [62] V. Lebedev, C. Y. Wang, V. Cimalla, S. Hauguth, T. Kups, M. Ali, G. Ecke, M. Himmerlich, S. Krischok, J. A. Schaefer, O. Ambacher, V. M. Polyakov, and F. Schwierz, “Effect of surface oxidation on electron transport in InN thin films,” Journal of Applied Physics 101, 123705 (2007).
    [63] A. Denisenko, C. Pietzka, A. Chuvilin, U. Kaiser, H. Lu, W. J. Schaff, and E. Kohn, “Depletion of surface accumulation charge in InN by anodic oxidation,” Journal of Applied Physics 105, 033702 (2009).
    [64] Y. H. Chang, Y. S. Lu, Y. L. Hong, C. T. Kuo, S. Gwo, and J. A. Yeh, “Effects of (NH4)2Sx treatment on indium nitride surfaces,” Journal of Applied Physics 107, 043710 (2010).
    [65] H. Lu, W. J. Schaff, and L. F. Eastman, “Surface chemical modification of InN for sensor applications,” Journal of Applied Physics 96, 3577-3579 (2004).
    [66] Y. S. Lu, C. L. Ho, J. A. Yeh, H. W. Lin, and S. Gwo, “Anion detection using ultrathin InN ion selective field effect transistors,” Applied Physics Letters 92, 212102 (2008).
    [67] Y. S. Lu, Y. H. Chang, Y. L. Hong, H. M. Lee, S. Gwo, and J. A. Yeh, “Investigation on □c-InN and a-InN:Mg field effect transistors using electrolyte gate bias,” Applied Physics Letters 95, 102104 (2009).
    [68] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, F. Ren, J. C. Zolper, and R. J. Shul, “Wet chemical etching survey of III□nitrides,” Solid-State Electronics 41(12), 1947-1951 (1997).
    [69] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” Journal of Applied Physics 94, 6477-6482 (2003).
    [70] R. P. Bhatta, B. D. Thoms, M. Alevli, and N. Dietz, “Desorption of hydrogen from InN(0001) observed by HREELS,” Surface Science 602, 1428-1432 (2008).
    [71] N. Barsan and U. Weimar, “Conduction model of metal oxide gas sensors,” Journal of Electroceramics 7, 143-167 (2001).
    [72] R. B. Cooper, G. N. Advani, and A. G. Jordan, “Gas sensing mechanisms in SnO2 thin films,” Journal of Electronic Materials 10(3), 455-472 (1981).
    [73] I. Lundstrom and C. Svensson, “Gas-Sensitive Metal Gate Semiconductor Devices,” Solid State Chemical Sensors, Chapter 1, Academic Press, New York (1985).
    [74] I. Lundstrom, M. S. Shivaraman, and C. Svensson, “Chemical reactions on palladium surfaces studied with Pd-MOS structures,” Surface Science 64, 497-519 (1977).
    [75] V. Tapio, R. Kuoppa, S. Suihkonen, M. Sopanen, and H. Lipsanen, “Metal contact on InN: Proposal for Schottky contact,” Japanese Journal of Applied Physics 45, 36-39 (2006).
    [76] E. Dimakis, E. Iliopoulos, K. Tsagaraki, and A. Georgakilas, “Physical model of InN growth on Ga-face GaN (0001) by molecular-beam epitaxy,” Applied Physics Letters 86, 133104 (2005).
    [77] T. Ive, O. Brandt, M. Ramsteiner, M. Giehler, H. Kostial, and K. H. Ploog, “Properties of InN layers grown on 6H–SiC(0001) by plasma-assisted molecular beam epitaxy,” Applied Physics Letters 84, 1671-1673 (2004).
    [78] M. F. Wu, S. Q. Zhou, A. Vantomme, Y. Huang, H. Wang, and H. Yang, “High-precision determination of lattice constants and structural characterization of InN thin films,” Journal of Vacuum Science & Technology A 24(2), 275-279 (2006).
    [79] D. Muto, T. Araki, H. Naoi, F. Matsuda, and Y. Nanishi, “Polarity determination of InN by wet etching,” Physica Status Solidi A 202(5), 773-776 (2005).
    [80] E. Souteynarda, D. Nicolasa, and J. R. Martina, “Semiconductor/metal/gas behaviour through surface-potential change,” Sensors and Actuators B 24, 871-875 (1995).
    [81] M. Durr and U. Hofer, “Dissociative adsorption of molecular hydrogen on silicon surfaces,” Surface Science Reports 61(12), 465-526 (2006).
    [82] C. K. Gan and D. J. Srolovitz, “First-principles study of wurtzite InN (0001) and (0001-) surfaces,” Physical Review B 74, 115319 (2006).
    [83] C. G. Van de Walle, J. L. Lyons, and A. Janotti, “Controlling conductivity of InN,” Physica Status Solidi A 207(5), 1024-1036 (2010).
    [84] L. F. J. Piper, T. D. Veal, M. Walker, I. Mahboob, C. F. McConville, H. Lu, and W. J. Schaff, “Clean wurtzite InN surfaces prepared with atomic hydrogen,” Journal of Vacuum Science & Technology A 23(4), 617-620 (2005).
    [85] M. Himmerlich, A. Eisenhardt, J. A. Schaefer, and S. Krischok, “PAMBE growth and in-situ characterisation of clean (2 × 2) and ( × ) R30° reconstructed InN(0001) thin films,” Physica Status Solidi B 246(6), 1173-1176 (2009).
    [86] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt□oxide□Al0.24Ga0.76As high-electron-mobility transistor,” Applied Physics Letters 86, 112103 (2005).
    [87] T. H. Tsai, H. I. Chen, C. F. Chang, P. S. Chiu, Y. C. Liu, L. Y. Chen, T. P. Chen, and W. C. Liu, “Hydrogen sensing properties of a metamorphic high electron mobility transistor,” Applied Physics Letters 94, 012102 (2009).
    [88] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Gorgens, and G. Dollinger, “Hydrogen response mechanism of Pt–GaN Schottky diodes,” Applied Physics Letters 80, 1222-1224 (2002).
    [89] A. Janotti and C. G. Van de Walle, “Sources of unintentional conductivity in InN,” Appl. Phys. Lett. 92, 032104 (2008).
    [90] G. Pettinari, F. Masia, M. Capizzi, A. Polimeni, M. Losurdo, G. Bruno, T. H. Kim, S. Choi, A. Brown, V. Lebedev, V. Cimalla, and O. Ambacher, “Experimental evidence of different hydrogen donors in n-type InN,” Phys. Rev. B 77, 125207 (2008).
    [91] V. Darakchieva, K. Lorenz, N. P. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. L. Hsiao, L. C. Chen, W. J. Schaff, L. W. Tu, T. Yamaguchi, and Y. Nanishi, “Hydrogen in InN: A ubiquitous phenomenon in molecular beam epitaxy grown material,” Appl. Phys. Lett. 96, 081907 (2010).
    [92] H. Hasegawa and M. Akazawa, “Hydrogen sensing characteristics and mechanism of Pd/AlGaN/GaN Schottky diodes subjected to oxygen gettering,” Journal of Vacuum Science & Technology B 25(4), 1495-1503 (2007).
    [93] A. Katsuki and K. Fukui, “H2 selective gas sensor based on SnO2,” Sensors and Actuators B 52, 30-37 (1998).
    [94] C. H. Kwon, D. H. Yun, H. K. Hong, S. R. Kim, K. Lee, H. Y. Lim, and K. H. Yoon, “Multi-layered thick-film gas sensor array for selective sensing by catalytic filtering technology,” Sensors and Actuators B 65, 327-330 (2000).
    [95] M. Haruta, “Novel catalysis of gold deposited on metal oxides,” Catalysis Surveys of Japan 1, 61-73 (1997).
    [96] R. Grisel, K. J. Weststrate, A. Gluhoi, and B. E. Nieuwenhuys, “Catalysis by Gold Nanoparticles,” Gold Bulletin 35/2, 39-45 (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE