研究生: |
鄭至成 Chih-Cheng Cheng |
---|---|
論文名稱: |
介電液體變焦透鏡 Electrically Tunable Dielectric Liquid Lens |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 119 |
中文關鍵詞: | 介電液體 、變焦透鏡 、介電力 、液體透鏡 、液晶 |
外文關鍵詞: | dielectric liquid, tunable lens, dielectric force, liquid lens, liquid crystal |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同於使用電潤濕效應之透鏡,本研究提出利用介電力驅動之液體透鏡,並利用實驗分析該透鏡之光學表現。此透鏡係由高介電係數和低介電係數之二種不互溶液體組成,並以等密度形式封裝於腔體內。當電場通過二液體之介面,藉由介電係數差異產生介電力,利用該介電力調變液珠之外形而達到焦距調變之目的。
在此液體透鏡中,液珠之形狀主要受到表面張力、附著力、重力和介電力所調制。本研究藉由自行發展的理論模型預估液珠外形之變化並藉以計算焦距變化和球面像差。另外,利用等效電路模型可以了解液體透鏡對交流電場的頻率響應。由於液珠在操控過程中易產生透鏡之光軸偏移,本論文亦對此現象提出三種定心機制以為因應。
最後,本論文實作一4mm厚度之液體透鏡藉以驗證其理論上和實驗上之光學表現。當液體透鏡操作時,實驗發現液珠接觸角具有遲滯和延遲的效應,而透鏡之光學解析度,由於不同折射率材質之介面反射導致解析度下降。該透鏡之操作電壓在200V以內時,具有三倍變焦之能力,而光軸偏移角約1.3度。
Unlike electrowetting lens, a tunable liquid lens driven by dielectric force was demonstrated and it was analyzed its optical performance experimentally. The lens consisted of two liquids, a high dielectric liquid and a low dielectric liquid, sealed in one chamber with an iso-density. The dielectric force was induced by the difference of dielectric constants and it acted on the interface of two liquids to deform a droplet’s profile. Such a deformation causes a lensing effect by the difference of refractive index of the two immiscible liquids.
In the liquid lens, the deformation of a droplet was actuated by forces such as surface tension, adhesion, gravitation and dielectric force. Theoretical models were developed to calculate the deformation of a liquid droplet’s profile and to evaluate the spherical aberration of the lens. In addition, a circuit model was used to understand the frequency response while the lens is actuated. Three centering mechanisms were proposed to reduce angular misalignment of the optical axis of the liquid lens.
Finally, a convex liquid lens with a thickness of 4mm was demonstrated. This lens was analyzed its optical performance experimentally and theoretically. Contact angle hysteresis and contact angle retardation appeared while the droplet was actuated in the lens. The interfacial reflection in the lens module reduced the optical resolution that was estimated by software ASAP. Microbubbles and ITO erosion that were induced by high electric conductivity were observed. This lens had a triple change of focal length in the range of applied voltage of 0-200V. The maximum of the angular misalignment was measured to be about 1.3°.
1 P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisnerz, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617-636 (1997).
2 M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28, 731-733 (2003).
3 H. Yang, C. K. Chao, M. K. Wei, and C. P. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Micreng. 14, 1197-1204 (2004).
4 C-P. Lin, H. Yang, and C-K. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Micreng. 13, 775-781 (2003).
5 L-W. Pan, X. Shen, and L. Lin, “Microplastic lens array fabricated by a hot intrusion process,” J. MEMS 13, 1063-1071 (2004).
6 T-K. Shin, J-R. Ho, and J-W. J. Cheng, “A new approach to polymeric microlens array fabrication using soft replica molding,” IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
7 Y. Fu, “Investigation of microlens mold fabricated by focused ion beam technology,” Microelectronic Eng. 56, 333-338 (2001).
8 C. R. King, L.Y. Lin, and M. C. Wu, “Out-of-plane refractive microlens fabricated by surface micromachining,” IEEE Photon. Technol. Lett. 8, 1349-1351 (1996).
9 F-B. Thomas, J. Li, and J. Ihlemann, “Micro-lens machining on optical fibers by direct laser ablation,” Proc. SPIE 5578, 589-595 (2004).
10 O. J. Cayre, and V. N. Paunov, “Fabrication of microlens arrays by gel trapping of self-assembled particle monolayers at the decane–water interface,” J. Mater. Chem. 14, 3300-3302 (2004).
11 J. Kim, M. J. Serpe, and L. Andrew Lyon, “Photoswitchable microlens arrays,“ Angew. Chem. Int. Ed. 44, 1333-1336 (2005).
12 J-Y. Huang, Y-S. Lu, and J. A. Yeh, “Self-assembled high NA microball lens arrays,” in Proceedings of IEEE Conference on MEMS (Institute of Electrical and Electronics Engineers, Istanbul, 2006), pp. 826-829.
13 W. Wang, J. Fang, and K. Varahramyan, “Compact variable-focusing microlens with integrated thermal actuator and sensor,” IEEE Photon. Technol. Lett. 17, 2643-2645 (2005).
14 D-Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y-H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
15 P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, “Fluidic lenses with variable focal length,” Appl. Phys. Lett. 88, 1-3 (2006).
16 D-Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y-H. Lo, “High-performance fluidic adaptive lenses,” Appl. Opt. 43, 783-787 (2004).
17 D-Y. Zhang, N. Justis, and Y-H. Lo, “Integrated Fluidic Lenses and Optic Systems,” IEEE J. Sel. Top. Quant. Electron. 11, 97-106 (2005).
18 A. H. Rawicz and I. Mikhailenko, “Modeling a variable-focus liquid-filled optical lens,“ Appl. Opt. 35, 1587-1589 (1996).
19 M. Agarwal, R. A. Gunasekaran, P. Coane and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
20 N. Chronis, G. L. Liu, K-H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370-2378 (2003).
21 K-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 11, 2494-2500 (2003).
22 H. Oku, K. Hashimoto, and M. Ishikawa, “Variable-focus lens with 1-kHz bandwidth,” Opt. Express 12, 2138-2149 (2004).
23 N. Sugiura, and S. Morita, “Variable-focus liquid-filled optical lens,” Appl. Opt. 32, 4181-4186 (1993).
24 J. Chen, W. Wang, J. Fang, and K. Varahramyan, ” Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 1675-680 (2004).
25 F. Krogmann, W. Mönch, and H. Zappe, “Adaptive micro-lenses based on electro-wetting,” DGaO Proceedings 2005- ISSN: 1614-8436
26 H-W Tung and W. Fang, “Thermal actuated solid tunable focal length microlens,” (Thesis, NTHU, Taiwan, 1995)
27 S. Kwon, and L. P. Lee, “Focal length control by microfabricated planar electrodes-based liquid lens (μPELL),” 11th Int. Conf.on Solid-State Sensors and Actuators (Munich, Germany,10-14 June 2001)
28 H. Wen, Hsieh, and J. H. Chen, “Lens-Profile Control by Electrowetting Fabrication Technique,” IEEE Photon. Technol. Lett. 17, 606-608 (2005).
29 B Hendriks, S Kuiper, “Through a lens sharply,” IEEE Spectrum December, 32-36 (2004).
30 Y. Shu, T. N. Krupenkin, P. Mach, and E. A. Chandross, “Tunable and Latchable Liquid Microlens with Photopolymerizable Components,” Adv. Mater. 15, 940-943 (2003).
31 T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
32 B. Berge, and J. Peseux, “Variable focal lens controlled by an external voltage - An application of electrowetting,” Eur. Phys. J. E 3, 159-163 (2000).
33 S. Kuiper, and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130 (2004).
34 J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett. 40, 4-5 (1982).
35 J. L. Jackel, S Hackwood, J. J. Veslka, and G. Beni, “Electrowetting switch for multimode optical fibers,” Appl. Opt. 22, 1765-1770 (1983).
36 J. Jackel, S. Hackwood, and G. Beni, “Electrical modulation of surface tension: applications to passive displays and optical switching devices,” IEEE J. Quant. Electron. 17, 2518-2520 (1981).
37 H. Kazunori, T. Soroj, M. Kiyoshi, and S. Isao, “Electrowetting-based pico-liter liquid actuation in a glass-tube microinjector,” Sensors and Actuators A 114, 473-477 (2004).
38 K. Hoshino, S. Triteyaprasert, K. Matsumoto, and I. Shimoyama, “Electrowetting-based actuation for microinjection,” 12th Int. Conf.on Solid-State Sensors and Actuators (Boston, USA, 8-12 June 2003).
39 J-Y Cheng, and L-C. Hsiung, “Electrowetting (EW)-Based Valve Combined with Hydrophilic Teflon Microfluidic Guidance in Controlling Continuous Fluid Flow,” Biomedical Microdevices 6, 341-347 (2004).
40 K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, and E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations,” J. MEMS 11, 454-461 (2002)
41 H. Zeng, A. D. Feinerman, Z. Wan, and P. R. Patel, “Piston-Motion Micromirror Based on Electrowetting of Liquid Metals,” J. MEMS 14, 285-294 (2005).
42 D. J. Laser, and J. G. Santiago, “A review of micropumps,” J. Micromech. Microeng. 14, R35–R64 (2004).
43 P. Paik, V. K. Pamula, M. G. Pollack, and R. B. Fair, “Electrowetting-based droplet mixers for microfluidic systems,” Lab Chip 3, 28-33 (2003).
44 J. Melin, G. Giménez, N. Roxhed, W. V. D. Wijngaart, and G. Stemme, “A fast passive and planar liquid sample micromixer,” Lab Chip 4 , 214-219 (2004).
45 N. T. Nguyen, and Z. Wu, “Micromixers-a review,” J. Micromech. Microeng. 15, R1–R16 (2005)
46 A. Quinn, R. Sedev, and J. Ralston, “Influence of the electrical double layer in electrowetting,” J. Phys. Chem. B 107, 1163-1169 (2003).
47 F. Mugele, and J-C Baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705–R774 (2005).
48 J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C-J Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sensor and Actuator A 95, 259-268 (2002).
49 H. Moon, S. K. Cho, R. L. Garrell, and C-J Kim, “Low voltage electrowetting-on-dielectric,” J. Appl. Phys. 92, 4080-4087 (2002)
50 T. Nose, S. Masuda, and S. Sato, “A Liquid Crystal Microlens with Hole-Patterned Electrodes on Both Substrates,” Jpn. J. Appl. Phys. 31, 1643-1646 (1992).
51 M. Honma, T. Nose, and S. Sato, “Improvement of Aberration Properties of Liquid Crystal Microlenses using the Stacked Electrode Structure,” Jpn. J. Appl. Phys. 40, 1322-1327 (2001).
52 M. Honma, T. Nose, and S. Sato, “Enhancement of Numerical Aperture of Liquid Crystal Microlenses Using a Stacked Electrode Structure,” Jpn. J. Appl. Phys. 39, 4799-4802 (2000).
53 H. Ren, Y-H Lin, and S-T Wu, “Adaptive lens using liquid crystal concentration redistribution,” Appl. Phys. Lett. 88, 191116 (2006)
54 H. Ren, Y-H. Lin, Y-H. Fan, and S-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005)
55 H. Ren, Y-H. Lin, and S-T. Wu, “Liquid crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608-1610 (2004).
56 J-H. Park, S-J. Kim, M-S. Jung, and S-D Lee, “Effect of the dielectric layer with photo-controllable surface relief on liquid crystal devices,” Materials Science and Engineering C 24, 53–56 (2004).
57 Y. Choi, J-H. Park, J-H. Kim, and S-D. Lee, ” Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials 21, 643–646 (2002).
58 L. G. Commander, S. E. Day, and D.R. Selviah, “Variable focal length microlenses,” Optics Communications 177, 157–170 (2000).
59 S. Masuda, S. Fujioka, M. Honma, T. Nose, and S. Sato, “Dependence of Optical Properties on the Device and Material Parameters in Liquid Crystal Microlenses,” Jpn. J. Appl. Phys., 35, 4668-4672 (1996).
60 T. Nose, S. Masuda, S. Sato, J. Li, L-C Chien, and P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351-353 (1997).
61 Y. Mao, B. Wang, and S. Sato, “Double-Layer Liquid Crystal Lens,” Jpn. J. Appl. Phys., 43, L352-L354 (2004).
62 H. Ren, Y-H. Fan, Y-H. Lin, and S-T. Wu,” Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Optics Communications 247, 101–106 (2005).
63 S. Yanase, K. Ouchi, and S. Sato, “Molecular Orientation States and Optical Properties of Liquid Crystal Microlenses with an Asymmetric Electrode Structure,” Jpn. J. Appl. Phys. 41, 1482-1488 (2002).
64 Y. Mao, M. Honma, and S. Sato, “Improvement of Decay Properties of a Liquid Crystal Microlens with a Divided Electrode Structure,” Jpn. J. Appl. Phys. 38, L1412-L1415 (1999).
65 M. Honma, T. Nose, and S. Sato, “Optical Properties of Anamorphic Liquid Crystal Microlenses and Their Application for Laser Diode Collimation,” Jpn. J. Appl. Phys. 38, 89–94 (1999).
66 S. Yanase, K. Ouchi, and S. Sato, ” Molecular Orientation Analysis of a Design Concept for Optical Properties of Liquid Crystal Microlenses,” Jpn. J. Appl. Phys. 40, 6514–6521 (2001).
67 T. Nose, S. Masuda, and S. Sato, “Optical Properties of a Liquid Crystal Microlens with a Symmetric Electrode Structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
68 A. Y. Gvozdarev, G. E. Nevskaya, and I. B. Yudin, “Adjustable liquid-crystal microlenses with homeotropic orientation,” J. Opt. Technol., 68, 682-686 (2001).
69 H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable microlens arrays using polymer network liquid crystal,” Optics Communications 230, 267-271 (2004).
70 H. Ren, and S. T. Wu, “Tunable electronic lens using polymer network liquid crystals,” Appl. Phys.Lett. 82, 22-24 (2003).
71 H. Ren, Y. H. Fan, and S. T. Wu, “Polymer network liquid crystals for tunable microlens arrays,” J. Phys. D: Appl. Phys. 37, 400-403 (2004).
72 H. Ren, Y. H. Fan, S. Gauza S, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789-4791 (2004).
73 H. S. Ji, J. H. Kim, and S. Kumar, “Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,” Opt. Lett. 28, 1147-1149 (2003).
74 Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials 21, 643-646 (2002).
75 Jacob N. Israelachvili, Intermolecular and surface forces: with applications to colloidal and biological systems (London ;Academic Press, 1985)
76 Arthur W. Adamson, Physical chemistry of surfaces (New York :J. Wiley, 1982)
77 C.G. L. Furmidge, “Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention,” J. Colloid. Sci. 17, 309-324 (1962).
78 A. W. Adamson and A. P. Gast, Physical chemistry of surfaces (Wiley, 5th ed, 1990).
79 F. Mugele, and J-C baret, “Electrowetting: from basics to applications,” J. Phys.: Condens. Matter 17, R705-R774 (2005).
80 A Ramos, H Morgan, N G Green, and A Castellanos, “Ac electrokinetics: a review of forces in microelectrode structures”, J. Phys. D: Appl. Phys. 31, 2338-2353 (1998).
81 H.A. Pohl., “Some Effects of Nonuniform Fields on Dielectrics,” J. Appl. Phys. 29, 1182-1188 (1958).
82 M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC, New York, 2003).
83 B. Burno, “Drop centering device,” U.S. Pat. No. 20050002113
84 T. B. Jones, “Liquid Dielectrophoresis on the Microscale,” J. Electrostatics 51-52, 290-299 (2001).
85 X. Wang, X-B Wang, and P. R. C. Gascoyne, “General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method,” J. Electrostatics 39, 277-295 (1997).
86 N. G. Green, A. Ramos, A. Goneälez, A. Castellnos, and H. Morgan, “Electric field induced fluid flow on microelectrodes,” J. Phys. D: Appl. Phys. 33, L13–L17 (2000).
87 D. S. Clague, and E. K. Wheeler, “Dielectrophoretic manipulation of macromolecules - The electric field,” Phys. Rev. E 64, 026605 (2001).
88 T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, “Dielectrophoretic liquid actuation and nanodroplet formation,” J. Appl. Phys., 89, 1441-1448 (2001).
89 T. B. Jones, “Basic theory of dielectrophoresis and electrorotation,” IEEE Engineering in Medicine and Biology Magazine November/December 2003, 33-42.
90 D. Malacara and Z. Malacara, Handbook of lens design (New York, Marcel Dekker, 1994).
91 E. Chen, and S. Y. Chou, “Characteristics of coplanar transmission lines on multilayer substrates - modeling and experiments,” IEEE Trans. Microwave Theory Tech. 45, 939-945 (1997).
92 S. Gevorgian, T. Martinsson, Peter L. J. Linnér, and E. L. Kollberg, “CAD models for multilayered substrate interdigital capacitors,” IEEE Trans. Microwave Theory Tech. 44, 896-904 (1996).
93 S. S. Gevorgian, H. Berg, H. Jacobsson, and T. Lewin, “Basic parameters of coplanar-strip waveguides on multilayer,” IEEE Microwave Magazine June 2003, 60-70.
94 S. S. Gevorgian, “Basic characteristics of two layered substrate coplanar waveguides,” Electron. Lett. 30, 1236-1237 (1994).