簡易檢索 / 詳目顯示

研究生: 徐維亨
Xu,Wei-Heng
論文名稱: 可折疊式觸控面板顯示器之結構設計及其挫曲脫層破壞研究
On The Structural Design and Buckled Delamination Failure of Foldable Touch Panel Display
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員: 李昌駿
Lee, Chang-Chun
陸蘇財
Lu, Su-Tsai
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 65
中文關鍵詞: 可折疊式觸控面板顯示器挫曲脫層保護機構
外文關鍵詞: Foldable Touch Panel Display, Buckled Delamination, Protection Mechanism
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由軟性顯示器及可折疊式觸控面板構成之可折疊式觸控面板顯示器,改變了人們對於傳統顯示器的刻板印象,從厚重、易碎轉變為輕、薄且具韌性,成為下世代極具潛力之產品。但可折疊式觸控面板顯示器於研發時仍需面對許多技術的挑戰,例如,因需具備高度可彎折性,而容易導致結構之彎曲破壞。此彎曲破壞除了來自結構本身之材料內聚型破壞外,尚有因塗層與基板間之挫曲脫層而造成的介面破壞,均須特予關注。
    為了有效提升可折疊式觸控面板顯示器之彎曲可靠度,本論文以工研院顯示中心提出之具彈性封裝膠框保護結構對折疊式觸控面板顯示器為對象,首先利用有限單元分析軟體ANSYS®探討其彎曲行為,並與傳統無彈性封裝膠框保護結構者進行比較。此外,配合田口氏實驗設計,本論文亦針對此彈性封裝膠框及觸控面板結構進行材料與幾何參數化分析,以供在彎曲負載下設計最佳可折疊式觸控面板顯示器結構之參考。
    本論文進一步以有限單元分析軟體ANSYS®就可折疊式觸控面板顯示器之挫曲脫層破壞進行分析,計算之結果並與解析解比較,顯示本論文所建立之有限單元分析模型之準確性。最後,亦藉由材料與幾何參數化設計,找出可提升其抗彎曲挫曲脫層破壞的方法。
    本論文之成果除可提升可折疊式觸控面板顯示器之彎曲可靠度外,並可降低面板結構之材料內聚型破壞與材料介面間之介面破壞,可供研發人員於設計可折疊式觸控面板顯示器之參考。


    Nowadays, the foldable touch display panel, comprising flexible display and foldable touch panel, can substantially change the people’s stereotype on the conventional display, which turns from heavy and frangible to light, thin and malleable. The foldable touch display panel thus becomes the potential product in the next generation. Nevertheless, some technical challenges, such as bending failure due to the high bendability of the foldable touch display panel, are encountered during the development of foldable touch display panel. The bending failure is attributed to not only the cohesive failure of the materials in the display panel but also the interfacial failure due to the buckling-driven delamination at the interface between coating layer and substrate. It is worthwhile to pay attention to these two critical issues.
    In order to effectively enhance the bendable reliability of the foldable touch display panel, the thesis aims at investigating the foldable touch display panel with elastic gel-frame package protection structure proposed by the industrial technology research institute. The finite element analysis software, i.e., ANSYS®, is first applied to evaluate the bendable behavior of the foldable touch display panel. A comparison between the foldable touch display panel with the protection structure and conventional foldable touch display panel without the protection structure is also made. Additionally, the parametric study on the foldable touch display panel with the protection structure, including various material property and geometry size, are performed based on the Taguchi experimental design. The parametric study can provide a reference for designing the foldable touch display panel with the best bendable reliability.
    Next, the thesis further used the finite element analysis software, ANSYS®, to analyze the buckling-driven delamination failure for the foldable touch display panel. The validation of the proposed finite element analysis model is also demonstrated by a comparison between the present results and analytic solution. Finally, the resistance ability of buckling-driven delamination failure can be improved based on the aforementioned parametric study.
    The results in the thesis can not only enhance the bendable reliability of the foldable touch display panel but also reduce the possibility of cohesive failure and interfacial failure. The results can supply a reference for development engineers to design the foldable touch display panel.

    第一章、導論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究目標 3 二、可折疊式觸控面板顯示器 5 三、研究方法 7 3.1 有限單元分析 7 3.2 破裂力學理論 8 3.3 雙層疊層結構挫曲下之能量釋放率 10 3.4 田口氏實驗設計 12 四、結果與討論 14 4.1 保護結構對觸控面板結構應力的影響 14 4.2 具側邊形保護結構之上蓋寬度效應 14 4.3 材料與幾何參數化分析 15 4.3.1 楊式模數參數化分析 15 4.3.2 厚度參數化分析 17 4.4 田口氏實驗設計 17 4.5 破裂力學分析 19 五、結論與未來展望 23 參考文獻 26 附表 29 附圖 35 附錄一 58 附錄二 64

    [1]. Alzoubi, K.; Hamasha, M. M.; Lu, S.and Sammakia, B. S. (2011): Bending Fatigue Study of Sputtered ITO on Flexible Substrate. Journal of Display Technology, Vol.7, No. 11, pp. 593-600.
    [2]. Brush, D. O.; Almroth, B. O. (1975): Buckling of Bars, Plates, and Shells. New York : McGraw-Hill.
    [3]. Caims, D. R.; Paine, D. C. and Carwford, G. P. (2001): The Mechanical Reliability of Sputter-Coated Indium Tin Oxide Polyester Substrates for Flexible Display and Touchscreen Applications. MRS Proceeding, Vol. 666.
    [4]. Cotterell, B. and Chen, Z. (2000): Buckling and Cracking of Thin Films on Compliant Substrates under Compression. International Journal of Fracture, Vol. 104, pp. 169–179.
    [5]. Forman, R. G. (1965): Effect of Plastic Deformation on the Strain Energy Release Rate in a Centrally Notched Plate Subjected to Uniaxial Tension. ASME paper 65-WA/MET-9.
    [6]. Griffith, A. A. (1921): The Phenomena of Rupture and Flow in Solid. Philosophical Transactions of the Royal Society of London, Sereis A, 221, pp. 163-198.
    [7]. Hutchinson, J. W.; Suo, Z. (1992): Mixed Mode Cracking in Layered Materials. Advances in Applied Mechanics, Vol. 29.
    [8]. Hutchinson, J. W. (2001): Delamination of Compressed Films on Curved Substrates. Journal of the Mechanics and Physics of Solids, Vol. 49, pp. 1847-1864.
    [9]. Lee, S. K. and Lee,J. U. (2003): The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates. Transactions on Electrical and Electronic Materials, Vol. 4, No. 6, pp. 5-8.
    [10]. Moon, M. W.; Jensen, H. M.; Hutchinson, J. W.; Oh, K. H.; Evans, A. G.(2002): The Characterization of Telephone cord Buckling of Compressed Thin Films on Substrates. Journal of the Mechanics and Physics of Solids, Vol. 50, pp. 2355-2377.
    [11]. Oh, J. S.; Cho, Y. R.; Cheon, K. E.; Karim, Md. A. and Jung, S. J. (2007): Failure Mechanism of Patterned ITO Electrodes on Flexible Substrate under Static and Dynamic Mechanical Stresses. Solid State Phenomena, Vol. 124-126, pp. 411-414.
    [12]. Rice, J. R. (1968): A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics, Vol. 35, pp. 379-386.
    [13]. Smelser, R. E. and Gurtin, M. (1977): On the J integral for Bi-material Bodies. International Journal Fracture Mechanics, Vol. 13, pp. 382-384.
    [14]. Shih, C. F.; Moran, B.; Nakamura, T. (1986): Energy Release Rate Along a Three-dimensional Crack Front in a Thermally Stressed Body. International Journal of Fracture, Vol. 30, pp. 79-102.
    [15]. Thouless, M. D. (1993): Combined Buckling and Cracking of Films. Journal of the American Ceramic Society, Vol. 76, pp. 2936–2938.
    [16]. Yu, H. H. and Hutchinson, J. W. (2002): Influence of Substrate Compliance on Buckling Delamination of Thin Films. International Journal of Fracture, Vol. 113, pp. 39-55.
    [17]. 李輝煌, ”田口方法品質設計的原理與實務”, 高立圖書有限公司, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE