研究生: |
楊旻蓉 Yang, Min-Jung |
---|---|
論文名稱: |
Ge-Sb-Ag-Sn-S-Se-Te 高熵熱電材料之製程與特性分析 Process and Characterization of Germanium–Antimony–Silver–Tin–Sulfur–Selenium–Tellurium High-Entropy Thermoelectric Materials |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: |
朱旭山
Chu, Hsu-Shen 吳欣潔 Wu, Hsin-Jay |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 相轉變 、高熵合金 、晶格扭曲 、熱導率 |
外文關鍵詞: | Phase transformation, High-entropy alloy, Lattice distortion, Thermal conductivity |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碲化鍺(GeTe)為現今中高溫型熱電材料中的發展主流,其優異的熱電傳輸性質和特殊的晶體結構吸引了許多研究團隊的目光。高熵工程(Entropy engineering)為一具有高度潛能改善熱電材料性質的手法,除了能同時提升熱電功率因子並降低晶格熱導率外,還能有助於材料結構的簡化。本研究以碲化鍺材料為出發,並加入熱電特性與其具有高度互補性之單硫化物(Monochalcogenides)的主要元素硫以及硒,再搭配其他元素製備出三個組成不同的(Ge/Sb/Ag/Sn)(S/Se/Te)新型高熵熱電材料,分別稱之為GSSST-Agx% (x = 0, 1, 4, 6)、GSSST-2 和GASST。首先,GSSST-Agx% (x = 0, 1, 4, 6)成功的藉由高熵效應(HEA effect)的引入將熱導率下降至極具有競爭力的範圍,最低之熱導率表現為GSSST-Ag4%於673 K時僅有~0.65 W/m·K。同時,其Seebeck係數也因能帶簡併(Band degeneracy)而有大幅度的改善,於673 K時提升到261 μV/K左右。接著,第二個系統GSSST-2則藉由控制其中GeS相的晶體取向(Crystallographic orientation),將導電率提升了接近一個數量級,從原先GSSST-Agx%之~30 S/cm上升至110 S/cm左右。最後,本研究設計並製備出了晶體結構為單一相的的高熵熱電系統GASST,不同於前兩個系統的(GeTe/GeS)雙相結構,其展現了極佳的導電率,於30 – 400 C之溫度區間內皆保持在2000 S/cm左右,為一顯著的熱電優勢。
GeTe is an attractive material of high tunability in electrical/thermal transport properties. Thermoelectric property of GeTe-based compounds can be greatly improved with reducd thermal conductivity and enhanced power factor through a multielement alloying approach. In this work, we synthesized GeTe-based high-entropy alloys (HEAs) with notable (S, Se) substitution at Te sites and (Ag, Sb, Sn) at Ge sites by powder metallurgy. The influence of lattice distortion on phase transformation and transport properties was investigated. Three HEA thermoelectrics with different compositions were synthesized and designated as GSSST-Agx% (x = 0, 1, 4, 6), GSSST-2 and GASST respectively. The GSSST-Ag4% exhibits an extremely low thermal conductivity of 0.65 W/m·K by HEA effect at 673 K. Simutaneously, a highly improved Seebeck coefficient of ~261 μV/K is also achieved by band degeneracy. Next, The GSSST-2 has a modified element composition, which enhances the electrical conductivity from 30 S/cm to 110 S/cm over the whole temperature range. The promotion was attributed to the increased mobility by controlling the crystallographic orientation of GeS phase in the GSSST-2. The GeS (200) texture was beneficial to enhance the electrical mobility of the GSSST-2 sample. Herein, the mobility of GSSST-2 was 17 cm2/V⋅s compared to that of GSSST (6.4 cm2 /V⋅s). Finally, GASST, the third derivative of GSSST, was synthesized, which revealed a GeTe single phase rather than GeTe/GeS two-phase mixture. The GASST shows a competitive electrical conductivity of ~2000 S/cm over a temperature range of 30 – 400 C.
[1] Snyder, G. J., & Toberer, E. S. (2011). Complex thermoelectric materials. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (pp. 101-110).
[2] Jien-Wei, Y. E. H. (2006). Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 31(6), 633-648.
[3] Hu, L., Zhang, Y., Wu, H., Li, J., Li, Y., Mckenna, M., ... & Zeng, X. (2018). Entropy Engineering of SnTe: Multi‐Principal‐Element Alloying Leading to Ultralow Lattice Thermal Conductivity and State‐of‐the‐Art Thermoelectric Performance. Advanced Energy Materials, 8(29), 1802116.
[4] Fan, Z., Wang, H., Wu, Y., Liu, X., & Lu, Z. (2017). Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 5(3), 187-194.
[5] Li, J., Zhang, X., Chen, Z., Lin, S., Li, W., Shen, J., ... & Pei, Y. (2018). Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2(5), 976-987.
[6] Zheng, Z., Su, X., Deng, R., Stoumpos, C., Xie, H., Liu, W., ... & Tang, X. (2018). Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. Journal of the American Chemical Society, 140(7), 2673-2686.
[7] Tan, Q., Zhao, L. D., Li, J. F., Wu, C. F., Wei, T. R., Xing, Z. B., & Kanatzidis, M. G. (2014). Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS. Journal of Materials Chemistry A, 2(41), 17302-17306.
[8] Shafique, A., & Shin, Y. H. (2017). Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Scientific reports, 7(1), 1-10.
[9] Mclennan, S. M. (2018). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In Geochemistry and mineralogy of rare earth elements (pp. 169-200). De Gruyter.
[10] LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C., & Goodson, K. E. (2014). Material and manufacturing cost considerations for thermoelectrics. Renewable and Sustainable Energy Reviews, 32, 313-327.
[11] Li, J., Chen, Z., Zhang, X., Sun, Y., Yang, J., & Pei, Y. (2017). Electronic origin of the high thermoelectric performance of GeTe among the p-type group IV monotellurides. NPG Asia Materials, 9(3), e353-e353.
[12] Pei, Y., LaLonde, A. D., Wang, H., & Snyder, G. J. (2012). Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 5(7), 7963-7969.
[13] Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., & Snyder, G. J. (2011). Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473(7345), 66-69.
[14] Chen, Z., Zhang, X., & Pei, Y. (2018). Manipulation of phonon transport in thermoelectrics. Advanced Materials, 30(17), 1705617.
[15] Biswas, K., He, J., Blum, I. D., Wu, C. I., Hogan, T. P., Seidman, D. N., ... & Kanatzidis, M. G. (2012). High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489(7416), 414-418.
[16] Liu, R., Chen, H., Zhao, K., Qin, Y., Jiang, B., Zhang, T., ... & Chen, L. (2017). Entropy as a gene‐like performance indicator promoting thermoelectric materials. Advanced Materials, 29(38), 1702712.
[17] Jiang, B., Yu, Y., Cui, J., Liu, X., Xie, L., Liao, J., ... & He, J. (2021). High-entropy-stabilized chalcogenides with high thermoelectric performance. Science, 371(6531), 830-834.
[18] Shafeie, S., Guo, S., Hu, Q., Fahlquist, H., Erhart, P., & Palmqvist, A. (2015). High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 118(18), 184905.
[19] Wang, X., Yao, H., Zhang, Z., Li, X., Chen, C., Yin, L., ... & Zhang, Q. (2021). Enhanced thermoelectric performance in high entropy alloys Sn0. 25Pb0. 25Mn0. 25Ge0. 25Te. ACS Applied Materials & Interfaces, 13(16), 18638-18647.
[20] Okamoto, H. (2000). Ge-Te (germanium-tellurium). Journal of Phase Equilibria and Diffusion, 5(21), 496-496.
[21] Perumal, S., Roychowdhury, S., & Biswas, K. (2016). High performance thermoelectric materials and devices based on GeTe. Journal of Materials Chemistry C, 4(32), 7520-7536.
[22] Li, J., Zhang, X., Wang, X., Bu, Z., Zheng, L., Zhou, B., ... & Pei, Y. (2018). High-performance GeTe thermoelectrics in both rhombohedral and cubic phases. Journal of the American Chemical Society, 140(47), 16190-16197.
[23] Tung, Y. W., & Cohen, M. L. (1969). Relativistic band structure and electronic properties of SnTe, GeTe, and PbTe. Physical Review, 180(3), 823.
[24] Li, J., Chen, Z., Zhang, X., Yu, H., Wu, Z., Xie, H., ... & Pei, Y. (2017). Simultaneous optimization of carrier concentration and alloy scattering for ultrahigh performance GeTe thermoelectrics. Advanced Science, 4(12), 1700341.
[25] Pei, Y., LaLonde, A., Iwanaga, S., & Snyder, G. J. (2011). High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4(6), 2085-2089.
[26] Samanta, M., & Biswas, K. (2017). Low thermal conductivity and high thermoelectric performance in (GeTe)1–2 x(GeSe)x(GeS)x: competition between solid solution and phase separation. Journal of the American Chemical Society, 139(27), 9382-9391.
[27] Zhang, X., & Zhao, L. D. (2015). Thermoelectric materials: Energy conversion between heat and electricity. Journal of Materiomics, 1(2), 92-105.
[28] Gomes, L. C., & Carvalho, A. (2015). Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure. Physical Review B, 92(8), 085406.
[29] Zhang, X., Shen, J., Lin, S., Li, J., Chen, Z., Li, W., & Pei, Y. (2016). Thermoelectric properties of GeSe. Journal of Materiomics, 2(4), 331-337.
[30] Wei, T. R., Tan, G., Zhang, X., Wu, C. F., Li, J. F., Dravid, V. P., ... & Kanatzidis, M. G. (2016). Distinct impact of alkali-ion doping on electrical transport properties of thermoelectric p-type polycrystalline SnSe. Journal of the American Chemical Society, 138(28), 8875-8882.
[31] Perumal, S., Roychowdhury, S., Negi, D. S., Datta, R., & Biswas, K. (2015). High thermoelectric performance and enhanced mechanical stability of p-type Ge1–x Sb xTe. Chemistry of Materials, 27(20), 7171-7178.
[32] Srinivasan, B., Gautier, R., Gucci, F., Fontaine, B., Halet, J. F., Cheviré, F., ... & Bureau, B. (2018). Impact of coinage metal insertion on the thermoelectric properties of GeTe solid-state solutions. The Journal of Physical Chemistry C, 122(1), 227-235.
[33] Doak, J. W., & Wolverton, C. (2012). Coherent and incoherent phase stabilities of thermoelectric rocksalt IV-VI semiconductor alloys. Physical Review B, 86(14), 144202.
[34] Girard, S. N., He, J., Li, C., Moses, S., Wang, G., Uher, C., ... & Kanatzidis, M. G. (2010). In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano letters, 10(8), 2825-2831.
[35] Perumal, S., Roychowdhury, S., & Biswas, K. (2016). Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge1− xBixTe. Inorganic Chemistry Frontiers, 3(1), 125-132.
[36] Li, J., Zhang, X., Lin, S., Chen, Z., & Pei, Y. (2017). Realizing the high thermoelectric performance of GeTe by Sb-doping and Se-alloying. Chemistry of Materials, 29(2), 605-611.
[37] Acharyya, P., Roychowdhury, S., Samanta, M., & Biswas, K. (2020). Ultralow Thermal Conductivity, Enhanced Mechanical Stability, and High Thermoelectric Performance in (GeTe)1–2x(SnSe)x(SnS)x. Journal of the American Chemical Society, 142(48), 20502-20508.
[38] Guo, S., Hu, Q., Ng, C., & Liu, C. T. (2013). More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase. Intermetallics, 41, 96-103.
[39] Qin, Y., Xiao, Y., & Zhao, L. D. (2020). Carrier mobility does matter for enhancing thermoelectric performance. APL Materials, 8(1), 010901.
[40] Yuan, K., Sun, Z., Zhang, X., & Tang, D. (2019). Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure. Scientific reports, 9(1), 1-12.
[41] Liu, Y., Cao, K., Liu, J., Zhang, Z., Ji, J., Wang, F., & Li, Z. (2019). Electrodeposition of copper-doped SnS thin films and their electric transmission properties control for thermoelectric enhancement. Journal of Materials Science: Materials in Electronics, 30(17), 15880-15888.
[42] Liu, W. D., Shi, X. L., Lin, Z. J., Sun, Q., Han, G., Chen, Z. G., & Zou, J. (2020). Morphology and texture engineering enhancing thermoelectric performance of solvothermal synthesized ultralarge SnS microcrystal. ACS Applied Energy Materials, 3(3), 2192-2199.
[43] Yan, M., Tan, X., Huang, Z., Liu, G., Jiang, P., & Bao, X. (2018). Synergetic optimization of electronic and thermal transport for high-performance thermoelectric GeSe–AgSbTe2 alloy. Journal of Materials Chemistry A, 6(18), 8215-8220.
[44] Duan, S., Yin, Y., Liu, G. Q., Man, N., Cai, J., Tan, X., ... & Jiang, J. (2021). Anomalous Thermopower and High ZT in GeMnTe2 Driven by Spin’s Thermodynamic Entropy. Research, 2021.
[45] Kim, H. S., Gibbs, Z. M., Tang, Y., Wang, H., & Snyder, G. J. (2015). Characterization of Lorenz number with Seebeck coefficient measurement. APL materials, 3(4), 041506.