簡易檢索 / 詳目顯示

研究生: 林金旺
Chin-Wang Lin
論文名稱: 加權柏格曼空間上之柯倫布朗猜想
Korenblum Conjecture in the Weighted Bergman Spaces
指導教授: 程守慶
So-Chin Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 37
中文關鍵詞: 柯倫布朗猜想加權柏格曼空間
外文關鍵詞: Korenblum Conjecture, Weighted Bergman Space
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在1991年柯倫布朗猜測會存在一個常數c屬於(0,1),使得對於任意解析函數f(z)和g(z)滿足“在環帶A(c,1)上,f(z)的絕對值小於或等於g(z)的絕對值”,則f的柏格曼範數會小於或等於g的柏格曼範數。
    本篇文章中主要是在加權柏格曼空間上考慮柯倫布朗猜想,並給出幾個柯倫布朗猜想在加權柏格曼空間上的部分結果。


    1 Introduction 2 Preliminary results 3 A theorem of Korenblum 4 Main results About totally monotone functions 5 Further estimate in the Bergman space

    [1] Artin, E., The Gamma Function, Holt, Rinehart and Winston, New York, Chicago, San
    Francisco, Toronto, London(1963).
    [2] Hayman, W. K., On a conjecture of Korenblum, Analysis, 19(1999), 195-205.
    [3] Hinkkanen, A., On a maximum principle in Bergman space, Journal D’Analysis Mathématique,
    79(1999), 335-344.
    [4] Korenblum, B., Transformation of zero sets by contractive operators in the Bergman
    space, Bulletin des Sciences Mathématiques, 2e série, 114(1990), 395-394.
    [5] Korenblum, B., A maximum principle for the Bergman space, Publ. Math., 35(1991),
    479-486.
    [6] Korenblum, B., O’neil, R., Richards, K., and Zhu, K., Totally monotone functions with
    applications to the Bergman space, Trans. Amer. Math. Soc., 307(1993), 795-806.
    [7] Korenblum, B., and Richards, K., Majorization and domination in the Bergman space,
    Proc. Amer. Math. Soc., 117, no. 1(1993), 153-158.
    [8] Lehto, O., A majorization principle in the theory of functions, Math. Scand. 1.(1953),
    5-17.
    [9] Rudin, W., Real and Complex Analysis, McGraw-Hill, New York(1987).
    [10] Schuster, A., The maximumprinciple for the Bergman space and the m˝obius pseudodistance
    for the annulus, preprint.
    [11] Dineen, S., The Schwarz Lemma, Oxford University Press, New York(1989).
    [12] Wang, Chunjie, Refining the constant in a maximum principle for the Bergman space,
    Proc. Amer. Math. Soc., 132, no. 3(2003), 853-855.
    [13] Wang, Chunjie, An upper bound on Korenblum’s constant, Integr. Equ. Oper. Theory,
    49(2004), 561-563.
    [14] Wang, Chunjie, On Korenblum’s constant, Journal of Mathematical Analysis and Applications,
    296(2004), 262-264.
    [15] **Wang, Chunjie, On Korenblum maximum principle, Proc. Amer. Math. Soc.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE