研究生: |
林金旺 Chin-Wang Lin |
---|---|
論文名稱: |
加權柏格曼空間上之柯倫布朗猜想 Korenblum Conjecture in the Weighted Bergman Spaces |
指導教授: |
程守慶
So-Chin Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 柯倫布朗猜想 、加權柏格曼空間 |
外文關鍵詞: | Korenblum Conjecture, Weighted Bergman Space |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在1991年柯倫布朗猜測會存在一個常數c屬於(0,1),使得對於任意解析函數f(z)和g(z)滿足“在環帶A(c,1)上,f(z)的絕對值小於或等於g(z)的絕對值”,則f的柏格曼範數會小於或等於g的柏格曼範數。
本篇文章中主要是在加權柏格曼空間上考慮柯倫布朗猜想,並給出幾個柯倫布朗猜想在加權柏格曼空間上的部分結果。
[1] Artin, E., The Gamma Function, Holt, Rinehart and Winston, New York, Chicago, San
Francisco, Toronto, London(1963).
[2] Hayman, W. K., On a conjecture of Korenblum, Analysis, 19(1999), 195-205.
[3] Hinkkanen, A., On a maximum principle in Bergman space, Journal D’Analysis Mathématique,
79(1999), 335-344.
[4] Korenblum, B., Transformation of zero sets by contractive operators in the Bergman
space, Bulletin des Sciences Mathématiques, 2e série, 114(1990), 395-394.
[5] Korenblum, B., A maximum principle for the Bergman space, Publ. Math., 35(1991),
479-486.
[6] Korenblum, B., O’neil, R., Richards, K., and Zhu, K., Totally monotone functions with
applications to the Bergman space, Trans. Amer. Math. Soc., 307(1993), 795-806.
[7] Korenblum, B., and Richards, K., Majorization and domination in the Bergman space,
Proc. Amer. Math. Soc., 117, no. 1(1993), 153-158.
[8] Lehto, O., A majorization principle in the theory of functions, Math. Scand. 1.(1953),
5-17.
[9] Rudin, W., Real and Complex Analysis, McGraw-Hill, New York(1987).
[10] Schuster, A., The maximumprinciple for the Bergman space and the m˝obius pseudodistance
for the annulus, preprint.
[11] Dineen, S., The Schwarz Lemma, Oxford University Press, New York(1989).
[12] Wang, Chunjie, Refining the constant in a maximum principle for the Bergman space,
Proc. Amer. Math. Soc., 132, no. 3(2003), 853-855.
[13] Wang, Chunjie, An upper bound on Korenblum’s constant, Integr. Equ. Oper. Theory,
49(2004), 561-563.
[14] Wang, Chunjie, On Korenblum’s constant, Journal of Mathematical Analysis and Applications,
296(2004), 262-264.
[15] **Wang, Chunjie, On Korenblum maximum principle, Proc. Amer. Math. Soc.