研究生: |
朱弘皓 Hung-hao Chu |
---|---|
論文名稱: |
HIV-1 CA中鄰近MHR (major homology region)C端的一段序列對於病毒粒子的組裝扮演決定性的角色 A region adjacent to the C terminus of HIV-1 capsid MHR (major homology region) plays a critical role in virus assembly |
指導教授: |
王錦鈿
楊孝德 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 人體免疫缺乏病毒 、病毒組裝 |
外文關鍵詞: | HIV-1, assembly |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
第一型人體免疫缺乏病毒(HIV-1)屬於反轉錄病毒的一種,表現反轉錄病毒的三個基本組成蛋白分子:Gag、Pol和Env;Gag上包含四個主要的區域:MA、CA、NC和p6,其中CA會組成病毒的殼層。之前的研究發現CA的蛋白質序列,從MHR起C端末約為整個CA的三分之ㄧ就足夠形成病毒粒子;我們的研究發現緊鄰MHR C端的序列1715-1758對於病毒的產生有重要的影響,這段序列中的胺基酸Q179、K182、W184突變成Alanine時會嚴重抑制病毒的產生,突變的Gag蛋白分子在細胞內的分佈並沒有改變,病毒無法產生的原因可能是無法形成高分子量的分子;另外我們也發現,在不同的反轉錄病毒中,從MHR到緊鄰MHR C端的序列,可能具有相類似的結構。
英文摘要
HIV-1 belongs to Retroviruses. HIV-1 expresses three basic components of retroviruses: Gag, Pol and Env. Gag protein can be devided into four major domains: MA, CA, NC amd p6. CA constitutes the core structure of a virus particle. In CA, previous research suggested that the region from MHR (major homology region) to the C terminus of CA is enough to produce a virus particle. Here, we showed that the sequence 1715-1758 is important for virus production. Of the ten CA mutants, Q179A, K182A and W184A caused severe defects in directing virus assembly and release. Although these mutants showed a subcellular distribution profile close to that of wild type, they appeared to be impaired to a certain degree in multimerization. Besides, we also found that different retroviruses may have similar structures from MHR to the region adjacent to C-terminus of MHR.
參考文獻
1. 1981
Pneumocystis pneumonia--Los Angeles.
MMWR Morb Mortal Wkly Rep 30:250-2
2. 1981
Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men--New York City and California.
MMWR Morb Mortal Wkly Rep. 30:305-8
3. Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA, Holzman RS, Wormser G, Brettman L, Lange M, Murray HW and Cunningham-Rundles S. 1981
An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction.
N Engl J Med. 305:1431-8
4. 1982
Update on acquired immune deficiency syndrome (AIDS) among patients with hemophilia A.
MMWR Morb Mortal Wkly Rep. 31:644-6, 652
5. 1982
Update on acquired immune deficiency syndrome (AIDS)--United States.
MMWR Morb Mortal Wkly Rep. 31:507-8, 513-4
6. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W and Montagnier L. 1983
Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).
Science 220:868-871
7. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, et al. 1984
Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS.
Science. 224:500-503
8. Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM, Oshiro LS. 1984
Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS.
Science. 225:840-2
9. McCune JM, Rabin LB, Feinberg MB, Lieberman M, Kosek JC, Reyes GR and Weissman IL 1988
Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus
Cell 53:55-67
10. Hallenberger S, Bosch V, Angliker H, Shaw E, Klenk HD and Garten W 1992
Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160
Nature 360:358-361
11. PP Lee and ML Linial 1994
Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal
J. Virol. 68:6644-6654
12. X Yuan, X Yu, TH Lee and M Essex 1993
Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor.
J. Virol. 67:6387-6394
13. W Zhou and MD Resh 1996
Differential membrane binding of the human immunodeficiency virus type 1 matrix protein
J. Virol. 70:8540-8548
15. Luz Hermida-Matsumoto and Marilyn D. Resh 1999
Human Immunodeficiency Virus Type 1 Protease Triggers a Myristoyl Switch That Modulates Membrane Binding of Pr55gag and p17MA
J. Virol. 73:1902-1908
16. EO Freed, G Englund, and MA Martin 1995
Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection
J. Virol. 69:3949-3954
17. Jean-Christophe Paillart and Heinrich G. Göttlinger 1999
Opposing Effects of Human Immunodeficiency Virus Type 1□matrix Mutations Support a Myristyl Switch Model of Gag Membrane Targeting.
J. Virol. 73:2604-2612
18. W Zhou, LJ Parent, JW Wills, and MD Resh 1994
Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids
J. Virol. 68:2556-2569
19. Akira Ono and EO Freed 2001
Plasma membrane rafts play a critical role in HIV-1 assembly and release
Proc. Natl. Acad. Sci. USA 98:13925-13930
20. Nathalie Chazal and Denis Gerlier 2003
Virus Entry, Assembly, Budding, and Membrane Rafts
Microbiol. Mol. Biol. Rev. 67:226-237
21. Aloia, R. C. , Tian, H. and Jensen, F. C. 1993
Lipid Composition and Fluidity of the Human Immunodeficiency Virus Envelope and Host Cell Plasma Membranes
Proc. Natl. Acad. Sci. USA 90:5181-5185
22. Deborah A. Brown and Erwin London 2000
Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts
J. Biol. Chem. 275:17221-17224
23. Simons K and Toomre D 2000
Lipid rafts and signal transduction
Nat. Rev. Mol. Cell. Biol. 1:31-39
24. O. Wolf Lindwasser and Marilyn D. Resh 2002
Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding
Proc. Natl. Acad. Sci. USA 99:13037-13042
25. M Facke, A Janetzko, RL Shoeman, and HG Krausslich 1993
A large deletion in the matrix domain of the human immunodeficiency virus gag gene redirects virus particle assembly from the plasma membrane to the endoplasmic reticulum
J. Virol. 67:4972-4980
26. EO Freed, JM Orenstein, AJ Buckler-White, and MA Martin 1994
Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production
J. Virol. 68:5311-5320
27. EO Freed and MA Martin 1996
Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions
J. Virol. 70:341-351
28. Tsutomu Murakami and Eric O. Freed 2000
Genetic Evidence for an Interaction between Human Immunodeficiency Virus Type 1 Matrix and alpha -Helix 2 of the gp41 Cytoplasmic Tail.
J. Virol. 74:3548-3554
29. Y Zhang and E Barklis 1997
Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation
J. Virol. 71:6765-6776
30. Dexter T. K. Poon, Guangde Li, and Anna Aldovini 1998
Nucleocapsid and Matrix Protein Contributions to Selective Human Immunodeficiency Virus Type 1 Genomic RNA Packaging
J. Virol. 72:1983-1993
31. RJ Gorelick, DJ Chabot, A Rein, LE Henderson and LO Arthur 1993
The two zinc fingers in the human immunodeficiency virus type 1 nucleocapsid protein are not functionally equivalent
J. Virol. 67:4027-4036
32. Robert J. Fisher, Alan Rein, Matthew Fivash, Maria A. Urbaneja, José R. Casas-Finet, Maxine Medaglia, and Louis E. Henderson 1998
Sequence-Specific Binding of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein to Short Oligonucleotides
J. Virol. 72:1902-1909
33. Amarasinghe, G. K., R. N. De Guzman, R. B. Turner, K. J. Chancellor, Z. R. Wu, and M. F. Summers. 2002
NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition.
J. Mol. Biol. 301:491-511
34. Eran Bacharach and Stephen P. Goff 1998
Binding of the Human Immunodeficiency Virus Type 1 Gag Protein to the Viral RNA Encapsidation Signal in the Yeast Three-Hybrid System
J. Virol. 72:6944-6949
35. J Clever, C Sassetti, and TG Parslow 1995
RNA secondary structure and binding sites for gag gene products in the 5' packaging signal of human immunodeficiency virus type 1
J. Virol. 69:2101-2109
36. Shainn-Wei Wang and Anna Aldovini 2002
RNA Incorporation Is Critical for Retroviral Particle Integrity after Cell Membrane Assembly of Gag Complexes
J. Virol. 76:11853
37. A. Roldan, R. S. Russell, B. Marchand, M. Gotte, C. Liang, and M. A. Wainberg 2004
In Vitro Identification and Characterization of an Early Complex Linking HIV-1 Genomic RNA Recognition and Pr55Gag Multimerization
J. Biol. Chem. 279:39886-39894
38. T Dorfman, J Luban, SP Goff, WA Haseltine and HG Gottlinger 1993
Mapping of functionally important residues of a cysteine-histidine box in the human immunodeficiency virus type 1 nucleocapsid protein
J. Virol. 67:6159-6169
39. Dawson L, Yu XF. 1998
The role of nucleocapsid of HIV-1 in virus assembly
Virology 251:141-157
40. Cimarelli, A., Sandin, S., Höglund, S., Luban, J. 2000
Basic Residues in Human Immunodeficiency Virus Type 1 Nucleocapsid Promote Virion Assembly via Interaction with RNA.
J. Virol. 74:3046-3057
41. Sandefur, S., Varthakavi, V., and Spearman, P. 1998
The I domain is required for efficient plasma membrane binding of human immunodeficiency virus type 1 Pr55Gag.
J. Virol. 72:2723-2732
42. Platt, E. J., and Haffar, O. K. 1994
Characterization of human immunodeficiency virus type 1 Pr55gag membrane association in a cell free system: Requirement for a C-terminal domain.
Proc. Natl. Acad. Sci. USA 91:4594-4598
43. Lee, Y. M., B. Liu, and X. F. Yu. 1999
Formation of virus assembly intermediate complexes in the cytoplasm by wild-type and assembly-defective mutant human immunodeficiency virus type 1 and their association with membranes.
J. Virol. 73:5654-5662
44. Yu, X.-F., Dawson, L., Tian, C.-J., Flexner, C., and Dettenhofer. 1998
Mutations of the human immunodeficiency virus type 1 p6Gag domain result in reduced retention of Pol proteins during virus assembly.
J. Virol. 72:3412-3417
45. Gottlinger, H. G., Dorfman, T., Sodroski, J. G., and Haseltine, W. A. 1991
Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release.
Proc. Natl. Acad. Sci. USA 88:3195-3199
46. M Huang, JM Orenstein, MA Martin and EO Freed 1995
p6Gag is required for particle production from full-length human immunodeficiency virus type 1 molecular clones expressing protease
J. Virol. 69:6810-6818
47. Wills, J. W., C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis. 1994
An assembly domain of the Rous sarcoma virus Gag protein required late in budding.
J. Virol. 68:6605-6618
48. Xiang, Y., C. E. Cameron, J. W. Wills, and J. Leis. 1996
Fine mapping and characterization of the Rous sarcoma virus Pr76gag late assembly domain.
J. Virol. 70:5695-5700
49. Yasuda, J., Hunter, E. 1998
A Proline-Rich Motif (PPPY) in the Gag Polyprotein of Mason-Pfizer Monkey Virus Plays a Maturation-Independent Role in Virion Release.
J. Virol. 72:4095-4103
50. Chen, C., Li, F., Montelaro, R. C. 2001
Functional Roles of Equine Infectious Anemia Virus Gag p9 in Viral Budding and Infection.
J. Virol. 75:9762-9770
51. Shehu-Xhilaga, M., Ablan, S., Demirov, D. G., Chen, C., Montelaro, R. C., Freed, E. O. 2004
Late Domain-Dependent Inhibition of Equine Infectious Anemia Virus Budding.
J. Virol. 78:724-732
52. Sook-Kyung Lee, Kunio Nagashima, and Wei-Shau Hu 2005
Cooperative Effect of Gag Proteins p12 and Capsid during Early Events of Murine Leukemia Virus Replication
J. Virol. 79:4159-4169
53. Demirov, D. G., A. Ono, J. M. Orenstein, and E. O. Freed. 2002
Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function.
Proc. Natl. Acad. Sci. USA 99:955-960
54. VerPlank, L., Bouamr, F., LaGrassa, T. J., Agresta, B., Kikonyogo, A., Leis, J., Carter, C. A. 2001
Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag.
Proc. Natl. Acad. Sci. U. S. A. 98:7724-7729
55. Goff, A., Ehrlich, L. S., Cohen, S. N., Carter, C. A. 2003
Tsg101 Control of Human Immunodeficiency Virus Type 1 Gag Trafficking and Release.
J. Virol. 77:9173-9182
56. Goila-Gaur, R., Demirov, D. G., Orenstein, J. M., Ono, A., Freed, E. O. 2003
Defects in Human Immunodeficiency Virus Budding and Endosomal Sorting Induced by TSG101 Overexpression.
J. Virol. 77: 6507-6519
57. Katzmann, D. J., M. Babst, and S. D. Emr. 2001
Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I.
Cell 106:145-155
58. Babst, M., G. Odorizzi, E. J. Estepa, and S. D. Emr. 2000
Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking.
Traffic 1:248-258
59. Garrus, J. E., U. K. von Schwedler, O. W. Pornillos, S. G. Morham, K. H. Zavitz, H. E. Wang, D. A. Wettstein, K. M. Stray, M. Cote, R. L. Rich, D. G. Myszka, and W. I. Sundquist. 2001
Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding.
Cell 107:55-65
60. Martin-Serrano, J., Yarovoy, A., Perez-Caballero, D., Bieniasz, P. D. 2003
Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins.
Proc. Natl. Acad. Sci. U. S. A. 100:12414-12419
61. J. Martin-Serrano, T. Zang, and P. D. Bieniasz 2003
Role of ESCRT-I in Retroviral Budding
J. Virol. 77:4794-4804
62. Stuchell, M. D., Garrus, J. E., Muller, B., Stray, K. M., Ghaffarian, S., McKinnon, R., Krausslich, H.-G., Morham, S. G., Sundquist, W. I. 2004
The Human Endosomal Sorting Complex Required for Transport (ESCRT-I) and Its Role in HIV-1 Budding.
J. Biol. Chem. 279:36059-36071
63. Uta K. von Schwedler, Melissa Stuchell, Barbara Müller, Diane M. Ward, Hyo-Young Chung, Eiji Morita, Hubert E. Wang, Thaylon Davis, Gong-Ping He, Daniel M. Cimbora, Anna Scott, Hans-Georg Kräusslich, Jerry Kaplan, Scott G. Morham, and Wesley I. Sundquist 2003
The Protein Network of HIV Budding
Cell 114:701-713
64. Amit, I., Yakir, L., Katz, M., Zwang, Y., Marmor, M. D., Citri, A., Shtiegman, K., Alroy, I., Tuvia, S., Reiss, Y., Roubini, E., Cohen, M., Wides, R., Bacharach, E., Schubert, U., Yarden, Y. 2004
Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding.
Genes & Dev. 18:1737-1752
65. Patnaik, A., Chau, V. and Wills, J.W. 2000
Ubiquitin is part of the retrovirus budding machinery.
Proc. Natl Acad. Sci. USA 97:13069–13074
66. Göttlinger, H. G., J. G. Sodroski, and W. A. Haseltine. 1989
Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1.
Proc. Natl. Acad. Sci. USA 86:5781-5785
67. Kräusslich, H.-G., M. Fäcke, A.-M. Heuser, J. Konvalinka, and H. Zentgraf. 1995
The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity.
J. Virol. 69:3407-3419
68. Wiegers, K., G. Rutter, H. Kottler, U. Tessmer, H. Hohenberg, and H. G. Krausslich. 1998
Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites.
J. Virol. 72:2846-2854
69. Gross, I., H. Hohenberg, T. Wilk, K. Wiegers, M. Grattinger, B. Muller, S. Fuller, and H. G. Krausslich. 2000.
A conformational switch controlling HIV-1 morphogenesis.
EMBO J. 19:103-113
70. Li, F., Goila-Gaur, R., Salzwedel, K., Kilgore, N. R., Reddick, M., Matallana, C., Castillo, A., Zoumplis, D., Martin, D. E., Orenstein, J. M., Allaway, G. P., Freed, E. O., Wild, C. T. 2003
PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing.
Proc. Natl. Acad. Sci. U. S. A. 100:13555-13560
71. Zhou, J., Yuan, X., Dismuke, D., Forshey, B. M., Lundquist, C., Lee, K.-H., Aiken, C., Chen, C. H. 2004
Small-Molecule Inhibition of Human Immunodeficiency Virus Type 1 Replication by Specific Targeting of the Final Step of Virion Maturation. J. Virol. 78:922-929
72. Huang, L., Yuan, X., Aiken, C., Chen, C. H. 2004
Bifunctional Anti-Human Immunodeficiency Virus Type 1 Small Molecules with Two Novel Mechanisms of Action.
Antimicrob. Agents Chemother. 48:663-665
73. Shehu-Xhilaga, M., H. G. Kraeusslich, S. Pettit, R. Swanstrom, J. Y. Lee, J. A. Marshall, S. M. Crowe, and J. Mak. 2001
Proteolytic processing of the p2/nucleocapsid cleavage site is critical for human immunodeficiency virus type 1 RNA dimer maturation.
J. Virol. 75:9156-9164
74. Tözsér, J., I. Blaha, T. D. Copeland, E. M. Wondrak, and S. Oroszlan. 1991
Comparison of the HIV-1 and HIV-2 proteinases using oligopeptide substrate representing cleavage sites in Gag and Gag-Pol polyproteins.
FEBS Lett. 281:77-80
75. Pettit, S. C., N. Sheng, R. Tritch, S. Erickson-Vitanen, and R. Swanstrom. 1998
The regulation of sequential processing of HIV-1 Gag by the viral protease.
Adv. Exp. Med. Biol. 436:15-25
76. Steve C. Pettit, Gavin J. Henderson, Celia A. Schiffer, and Ronald Swanstrom 2002
Replacement of the P1 Amino Acid of Human Immunodeficiency Virus Type 1 Gag Processing Sites Can Inhibit or Enhance the Rate of Cleavage by the Viral Protease
J. Virol. 76:10226-10233
77. YM Zhang, H Imamichi, T Imamichi, HC Lane, J Falloon, MB Vasudevachari, and NP Salzman 1997
Drug resistance during indinavir therapy is caused by mutations in the protease gene and in its Gag substrate cleavage sites
J. Virol. 71:6662-6670
78. Alejandro Carrillo, Kent D. Stewart, Hing L. Sham, Daniel W. Norbeck, William E. Kohlbrenner, John M. Leonard, Dale J. Kempf, and Akhteruzzaman Molla 1998
In Vitro Selection and Characterization of Human Immunodeficiency Virus Type 1 Variants with Increased Resistance to ABT-378, a Novel Protease Inhibitor
J. Virol. 72:7532-7541
79. Tamiya, S., Mardy, S., Kavlick, M. F., Yoshimura, K., Mistuya, H. 2004
Amino Acid Insertions near Gag Cleavage Sites Restore the Otherwise Compromised Replication of Human Immunodeficiency Virus Type 1 Variants Resistant to Protease Inhibitors.
J. Virol. 78:12030-12040
80. Moses Prabu-Jeyabalan, Ellen A. Nalivaika, Nancy M. King, and Celia A. Schiffer 2004
Structural Basis for Coevolution of a Human Immunodeficiency Virus Type 1 Nucleocapsid-p1 Cleavage Site with a V82A Drug-Resistant Mutation in Viral Protease
J. Virol. 78:12446-12454
81. Clavel, F., Hance, A. J. 2004
HIV Drug Resistance.
N Engl J Med 350:1023-1035
82. Gitti, R. K., B. M. Lee, J. Walker, M. F. Summers, S. Yoo, and W. I. Sundquist. 1996
Structure of the amino-terminal core domain of the HIV-1 capsid protein.
Science 273:231-235
83. Franke, E. K., H. E. H. Yuan, and J. Luban 1994
Specific incorporation of cyclophilin A into HIV-1 virions
Nature 372:359-362
84. Gamble, T. R., F. F. Vajdos, S. Yoo, D. K. Worthylake, M. Houseweart, W. I. Sundquist, and C. P. Hill. 1996
Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid
Cell 87:1285-1294
85. Thali, M., A. A. Bukovsky, E. Kondo, B. Rosenwirth, C. T. Walsh, J. Sodroski, and H. G. Go¨ttlinger 1994
Functional association of cyclophilin A with HIV-1 virions
Nature 372:363-365
86. Braaten, D., C. Aberham, E. K. Franke, L. Yin, W. Phares, and J.Luban 1996
Cyclosporine A-resistant human immunodeficiency virus type 1 mutants demonstrate that Gag encodes the functional target of cyclophilinA
J. Virol. 70:5170-5176
87. Dolinski K, Muir S, Cardenas M, Heitman J. 1997
All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae.
Proc. Natl. Acad. Sci. U. S. A. 94:13093-13098
88. Lodish, H., and N. Kong 1991
Cyclosporin A inhibits an initial step in folding of transferrin within the endoplasmic reticulum
J. Biol. Chem. 266:14835-14838
89. Matouschek, A., S. Rospert, K. Schmid, B. S. Glick, and G. Schatz 1995
Cyclophilin catalyzes protein folding in yeast mitochondria
Proc. Natl. Acad. Sci. USA 92:6319-6323
90. Steinmann, B., P. Bruckner, and A. Superti-Furga 1991
Cyclosporin A slows collagen triple-helix formation in vivo: indirect evidence for a physiologic role of peptidyl-prolyl cis-trans-isomerase
J. Biol. Chem. 266:1299-1303
91. Braaten, D., E. K. Franke, and J. Luban. 1996
Cyclophilin A is required for an early step in the life cycle of human immunodeficiency virus type 1 prior to the initiation of reverse transcription.
J. Virol. 70:3551-3560
92. Andrew C. S. Saphire, Michael D. Bobardt, and Philippe A. Gallay 2002
Cyclophilin A Plays Distinct Roles in Human Immunodeficiency Virus Type 1 Entry and Postentry Events, as Revealed by Spinoculation
J. Virol. 76:4671-4677
93. L. Dietrich, L. S. Ehrlich, T. J. LaGrassa, D. Ebbets-Reed, and C. Carter 2001
Structural Consequences of Cyclophilin A Binding on Maturational Refolding in Human Immunodeficiency Virus Type 1 Capsid Protein
J. Virol. 75:4721-4733
94. Gamble, T. R., S. Yoo, F. F. Vajdos, U. K. von Schwedler, D. K. Worthylake, H. Wang, J. P. McCutcheon, W. I. Sundquist, and C. P. Hill. 1997
Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein
Science 278:849-853
95. Momany, C., L. C. Kovari, A. J. Prongay, W. Keller, R. K. Gitti, B. M. Lee, A. E. Gorbalenya, L. Tong, J. McClure, L. S. Ehrlich, M. F. Summers, C. Carter, and M. G. Rossmann. 1996
Crystal structure of dimeric HIV-1 capsid protein.
Nat. Struct. Biol. 63:763-770
96. Worthylake DK, Wang H, Yoo S, Sundquist WI, Hill CP. 1999
Structures of the HIV-1 capsid protein dimerization domain at 2.6 A resolution
Acta Crystallogr D Biol Crystallogr. 55:85-92
97. Wills, J. W., and R. C. Craven. 1991
Form, function, and use of retroviral Gag proteins
AIDS 5:639-654
98. Borsetti, A., Ohagen, A., Göttlinger, H. G. 1998
The C-Terminal Half of the Human Immunodeficiency Virus Type 1□Gag Precursor Is Sufficient for Efficient Particle Assembly.
J. Virol. 72:9313-9317
99. Accola, M. A., Strack, B., Göttlinger, H. G. 2000
Efficient Particle Production by Minimal Gag Constructs Which Retain the Carboxy-Terminal Domain of Human Immunodeficiency Virus Type 1 Capsid-p2 and a Late Assembly Domain.
J. Virol. 74:5395-5402
100. von Schwedler, U. K., Stray, K. M., Garrus, J. E., Sundquist, W. I. 2003
Functional Surfaces of the Human Immunodeficiency Virus Type 1 Capsid Protein.
J. Virol. 77:5439-5450
101. Halwani, R., A. Khorchid, and L. Kleiman. 2003
Rapid localization of Gag/GagPol complexes to detergent-resistant membrane during the assembly of HIV-1.
J. Virol. 77:3973-3984
102. Park, J., and C. D. Morrow. 1992
The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into virus-like particles.
J. Virol. 66:6304-6313
103. Smith, A. J., M. I. Cho, M. L. Hammarskjöld, and D. Rekosh. 1990
Human immunodeficiency virus type 1 Pr55gag and Pr160gag-pol expressed from a simian virus 40 late replacement vector are efficiently processed and assembled into virus-like particles.
J. Virol. 64:2743-2750
104. Huang, M., and M. A. Martin. 1997
Incorporation of Pr160gag-pol into virus particles requires the presence of both the major homology region and adjacent C-terminal capsid sequences within the Gag-Pol polyprotein.
J. Virol. 71:4472-4478
105. Page, K. A., N. R. Landau, and D. R. Littman. 1990
Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity.
J. Virol. 64:5270-5276
106. F Mammano, A Ohagen, S Hoglund, and HG Gottlinger 1994
Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis
J. Virol. 68:4927-4936
107. Accola, M. A., S. Hoglund, and H. G. Gottlinger. 1998
A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly.
J. Virol. 72:2072-2078
108. Chen Liang, Jing Hu, Rodney S. Russell, Ariel Roldan, Lawrence Kleiman, and Mark A. Wainberg 2002
Characterization of a Putative α-Helix across the Capsid-SP1 Boundary That Is Critical for the Multimerization of Human Immunodeficiency Virus Type 1 Gag
J. Virol. 76:11729-11737
109. Brian C. Cunningham; James A. Wells 1988
High-Resolution Epitope Mapping of hGH-Receptor Interactions by Alanine-Scanning Mutagenesis
Science 244:1081-1085
110. Kirsi Holm, Katarzyna Weclewicz, Roger Hewson, and Maarit Suomalainen 2003
Human Immunodeficiency Virus Type 1 Assembly and Lipid Rafts: Pr55gag Associates with Membrane Domains That Are Largely Resistant to Brij98 but Sensitive to Triton X-100
J. Virol. 77:4805-4817
111. Daniel Melamed, Michal Mark-Danieli, Michal Kenan-Eichler, Osnat Kraus, Asher Castiel, Nihay Laham, Tal Pupko, Fabian Glaser, Nir Ben-Tal, and Eran Bacharach. 2004
The Conserved Carboxy Terminus of the Capsid Domain of Human Immunodeficiency Virus Type 1 Gag Protein Is Important for Virion Assembly and Release
J. Virol. 78:9675-9688
112. Marta del Álamo, José Luis Neira and Mauricio G. Mateu 2003
Thermodynamic Dissection of a Low Affinity Protein-Protein Interface Involved in Human Immunodeficiency Virus Assembly
J. Biol. Chem. 278:27923-27929
113. María T. Garzón, María C. Lidón-Moya, Francisco N. Barrera, Alicia Prieto, Javier Gómez, Mauricio G. Mateu and José L. Neira. 2004
The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: A biophysical characterization
Protein Science 13:1512-1523
114. C Strambio-de-Castillia and E Hunter 1992
Mutational analysis of the major homology region of Mason-Pfizer monkey virus by use of saturation mutagenesis
J. Virol. 66:7021-7032
115. RC Craven, AE Leure-duPree, RA Weldon, Jr, and JW Wills 1995
Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein
J. Virol. 69:4213-4227
116. Tina M. Cairns and Rebecca C. Craven 2001
Viral DNA Synthesis Defects in Assembly-Competent Rous Sarcoma Virus CA Mutants
J. Viol. 75:242-250
117. Véronique Bériault, Jean-François Clément, Kathy Lévesque, Catherine LeBel, Xiao Yong, Benoit Chabot, Éric A. Cohen, Alan W. Cochrane, William F. C. Rigby, and Andrew J. Mouland 2004
A Late Role for the Association of hnRNP A2 with the HIV-1 hnRNP A2 Response Elements in Genomic RNA, Gag, and Vpr Localization
J. Biol. Chem. 279:44141-44153
118. KJ Orlinsky, J Gu, M Hoyt, S Sandmeyer and TM Menees 1996
Mutations in the Ty3 major homology region affect multiple steps in Ty3 retrotransposition
J. Viol. 70:3440-3448
119. S. Rashkova, A. Athanasiadis, and M.-L. Pardue 2003
Intracellular Targeting of Gag Proteins of the Drosophila Telomeric Retrotransposons
J. Viol. 77:6376-6384
120. Kate N. Bishop, Michael Bock, Greg Towers, and Jonathan P. Stoye
Identification of the Regions of Fv1 Necessary for Murine Leukemia Virus Restriction
J. Viol. 1992 75:5182-5188