簡易檢索 / 詳目顯示

研究生: 蘇信昌
論文名稱: 以網印法製備奈米碳管場發射陰極材料並探討電極邊緣效應對場發射特性之影響
指導教授: 戴念華
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 85
中文關鍵詞: 多壁奈米碳管單壁奈米碳管網印法場發射
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是以多壁奈米碳管以及單壁奈米碳管調配出來的漿料,利用網印法製備場發射陰極材料。在實驗中除了探討不同形狀的陰極圖形以及不同種類的基板對場發射特性的影響之外,也針對電極形狀以及基板的材料特性作了一些電場的模擬。實驗結果發現,陰極電極的邊緣是最容易發射電子的位置,運用此一特性設計出來的網狀的陰極圖形不僅有良好的場發射特性,也可以用來製作大面積的場發射體。
    除此之外,也發現基板種類確實會影響場發射性能,其中以氧化鋁(Al2O3)基板為最佳。在電場模擬方面,結果顯示電極的邊緣受到的電場強度最強,邊緣角度如果越接近垂直,其電場加強效應會越大;在基板方面,如果基板的介電常數越小,電極邊緣的電場加強效應也會隨著變大。


    摘要.............................................................................................................I 誌謝...........................................................................................................II 總目錄…………………………………………………………………..III 圖表目錄………………………………………………………………..VI 第一章 緒論..............................................................................................1 1.1 簡介.................................................................................................1 1.2 奈米碳管之結構….........................................................................1 1.3 奈米碳管的主要製程.....................................................................2 1.3.1 電弧放電法(arc-discharge method).....................................3 1.3.2 雷射熱昇華法(laser ablation method).................................3 1.3.3 化學氣相沉積法(chemical vapor deposition)…………….4 1.4 奈米碳管主要應用……………………………………………….5 1.4.1 場發射電子源……………………………………………..5 1.4.2 鋰離子二次電池與燃料電池……………………………..5 1.4.3 微電子元件………………………………………………..6 1.4.4 原子力顯微鏡(AFM)掃描探針…………………………...7 第二章 研究動機與文獻回顧…………………………………………15 2.1 研究動機………………………………………………………...15 2.2 場發射理論……………………………………………………...16 2.2.1 Fowler-Nordheim 方程式………………………………..17 2.2.2 Fowler-Nordheim 方程式應用於奈米碳管場發射……..18 2.3 奈米碳管場發射特性探討……………………………………...20 2.4 奈米碳管應用在場發射電子源………………………………...21 2.4.1 場發射照明元件…………………………………………22 2.4.2 場發射顯示器……………………………………………22 第三章 研究方法與實驗步驟…………………………………………28 3.1 研究方法………………………………………………………...28 3.2 實驗步驟………………………………………………………...28 3.2.1 以懸浮觸媒法製備奈米碳管……………………………28 3.2.1.1 多壁奈米碳管的製程方法………………………….28 3.2.1.2 單壁奈米碳管的製程方法………………………….29 3.2.2 以網印法製備場發射陰極材料…………………………30 3.2.3 檢測方法…………………………………………………31 3.2.3.1 場發射性能量測…………………………………….31 3.2.3.2 顯微結構觀察……………………………………….32 第四章 結果與討論……………………………………………………34 4.1以多壁奈米碳管製備的試片之熱處理結果……………………34 4.2不同的陰極形狀對其場發射特性之影響………………………35 4.3以電腦模擬分析電極邊緣對場發射特性的影響………………39 4.3.1 電極邊緣的角度變化對場發射特性的影響……………40 4.3.2 基板的介電常數(K)對場發射特性的影響……………...40 4.4 以單壁奈米碳管製備場發射陰極材料………………………...41 4.4.1 單壁奈米碳管漿料製備的試片之熱處理結果…………41 4.4.2 單壁奈米碳管漿料製備的試片之場發射特性…………41 4.5 玻璃粉的添加對場發射特性的影響…………………………...43 4.6 以不同種類的基板製備場發射試片…………………………...43 4.6.1 以玻璃基板製備場發射試片……………………………44 4.6.2 以高介電基板(K=350)製備場發射試片………………..46 4.6.3 以ITO玻璃基板製備場發射試片……………………….46 4.7 以高分子塗膠混合單壁奈米碳管製備碳管漿料……………..47 第五章 結論…………………………………………………………...81 第六章 參考文獻……………………………………………………...83

    1.S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    2.Rice University: Rick Smalley’s Group Home Page Image Gallery
    3.M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, ‘‘Exceptionally high Young’s modulus observed for individual carbon nanotubes’’, Nature, 381, 678 (1996)
    4.G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P.Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, 1550 (1995)
    5.W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, 1179 (1995)
    6.C. Dillon, K.M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, 377 (1997)
    7.Seung Mi Lee and Young Hee Lee, ‘‘Hydrogen storage in single-walled carbon nanotubes’’, Appl. Phys. Lett., 76 (20), 2877 (2000)
    8.Sander J. Tans, Alwin R. M. Verschueren and Cees Dekker, ‘‘Room-temperature transistor based on a single carbon nanotube’’, Nature, 393, 49 (1998)
    9.M. Ahlskog, R. Tarkiainen, L. Roschier, and P. Hakonen, ‘‘Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties’’, Appl. Phys. Lett., 77 (24), 4037 (2000)
    10.H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, ‘‘Nanotubes as nanoprobes in scanning probe microscopy’’, Nature, 384, 147 (1996)
    11.P. Calvert, ‘‘Strength in disunity’’, Nature, 357, 356 (1992)
    12.L. Jin, C. Bower, and O.Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73 (9), 1197 (1998)
    13.A. Setlur, J.M. Lauerhaas, J.Y. Dai, and R.P.H. Chang, ‘‘A method for synthesizing large quantities of carbon nanotubes and encapsulated copper nanowires”, Appl. Phys. Lett. 69 (3), 345 (1996)
    14.F. Okuyama, T. Hayashi, and Y. Fujimoto, “Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes”, J. Appl. Phys., 84(3), 1626 (1998)
    15.Guangli Che, Brinda B. Lakshmi, Ellen R. Fisher and Charles R. Martin, ‘‘Carbon nanotubule membranes for electrochemical energy storage and production’’,
    Nature, 393, 346 (1998)
    16.B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou,‘‘Electrochemical intercalation of single-walled carbon nanotubes with lithium’’, Chem. Phys. Lett., 307, 153 (1999)
    17.M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 (1995)
    18.“Carbon Nanotubes and Related Structures-new materials for the twenty-first century” Peter J. F. Harris, Department of Chemisty, University of Reading
    19.Yahachi Saito ,Sashiro Uemura, ‘‘Field emission from carbon nanotubes and its application to electron sources’’, Carbon, 38, 169 (2000)
    20.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, ‘‘Catalytic growth of single-walled nanotubes by laser vaporization’’, Chem. Phys. Lett., 243, 49,(1995)
    21.A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, M.J. Heben, ‘‘Controlling single-wall nanotube diameters with variation in laser pulse power’’, Chem. Phys.
    Lett., 316, 13, (2000)
    22.H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus,‘‘Large-scale and low-cost synthesis of single-walled carbon nanotubes’’,
    Appl.Phys. Lett., 72, 3282 (1998)
    23.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, P. N. Provencio, ‘‘Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass’’, Science, 282, 1105, (1998)
    24.M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, ‘‘Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma’’,
    Appl. Phys.Lett., 73 (15), 918 (1998)
    25.M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, ‘‘Recent development of carbon materials for Li ion batteries’’, Carbon, 38, 183 (2000)
    26.B, Gao, A, Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O.Zhou, ‘‘Electrochemical intercalation of single-walled carbon nanotubes with lithium’’, Chem. Phys. Lett., 307, 153, (1999)
    27.Y. Chen, D. T. Shaw, X. D. Bai, E. G. Wang, C. Lund, W. M. Lu, D.L. Chung, ‘‘Hydrogen storage in aligned carbon nanotubes’’, Appl. Phys. Lett., 78, 2128, (2001)
    28.C. Dollon, M. J. Heben, ‘‘ Hydrogen storage using carbon adsorbents: past, present and future ’’, Appl. Phys. A, 72, 133, (2001)
    29.Hamada. N., Sawada, S. I. and Oshiyama, ‘‘New one-dimensional conductors: Graphitic microtubules ’’, Phys. Rev. Let., 68, 1579, (1992)
    30.Wildoer, J. W. G., Venema, L. C., Rinz-Ler, A. G., Smalley, R. E. and Dekker C., ‘‘Electronic structure of atomically resolved carbon nanotubes’’, Nature, 391, 59, (1998)
    31.Martel. R., Schmidt, T. Shea, H. R., Hertel, T. and Avouris. P., ‘‘Single- and multi-wall carbon nanotube field-effect transistors ’’, Appl. Phys. Lett., 73 (17), 2447 (1998)
    32.Yao. Z, Postma. H. W. C., Balents. L. and Dekker. C., “Carbon nanotube intramolecular junctions”, Nature, 402, 273, (1999)
    33.Chin Li Cheung, C. M. Lieber, “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology”, Nature, 394, 52, (1998)
    34.A. Talin, K. A. Dean, J.E. Jaskie, “Field emission display:a critical review”, solid-State Electronics, 45, 964 (2001)
    35.電子與材料雜誌,第12期,第142頁
    36.蔡宗岩,「以奈米碳管、碳纖維製備場發射陰極材料並探討電極幾何形狀對場發射特性之影響」,國立清華大學材料科學工程研究所碩士論文 (2003)
    37.S.J. Lin, S.L. Lee, J. Hwang, C.S. Changand, and H.Y. Wen, “Effects of local facet and lattice damage on nucleation of diamond grown by microwave plasma”, Appl. Phys. Lett., 60 1559 (1992).
    38.Jean-Marc Bonard , Mirko Croci, Christian Klinke, Ralph Kurt , Olivier Noury,Nicolas Weiss, ‘‘Carbon nanotube films as electron field emitters’’, Carbon, 40, 1715 (2002)
    39.W. Zhu, C. Bower, G. P. Kochanski, S. Jin, “Electron field emission from nanostructured diamond and carbon nanotubes” , Solid-State Electronics, 45, 921 (2001)
    40.N. S. Xu, Y. Chen, S. Z. Deng, J. Chen, X. C. Ma, E. G. Wang, “Vacuum gap dependence of field electron emission properties of large area multi-walled carbon nanotube films”, J. Phys. D. Appl. Phys, 34 1597 (2001)
    41.Hirohiko Murakami, Masaaki Hirakawa, Chiaki Tanaka and Hiroyuki Yamakawa,‘‘Field emission from well-aligned, patterned, carbon nanotube emitters’’, Appl. Phys. Lett., 76, 1776 (2000)
    42.Jean-Marc Bonard, Thomas Sto¨ ckli, Olivier Noury and Andre´ Chatelain, ‘‘Field emission from cylindrical carbon nanotube cathodes: Possibilities for
    luminescent tubes’’, Appl. Phys. Lett., 78, 2775 (2001)
    43.Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources” , Carbon 38, 169 (2000)
    44.卓言,「有機鐵催化劑對奈米碳管成長之研究」,國立清華大學材料科學工程研究所碩士論文 (2001)
    45.W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J.E. Jung, N. S. Lee, G. S. Park and J. M. Kim, ‘‘Fully sealed, high-brightness
    carbon-nanotube field-emission display’’, Appl. Phys. Lett., 75, 3129 (1999)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE