研究生: |
盧昂佑 Lu, Ang-Yu |
---|---|
論文名稱: |
利用化學氣相沉積法合成石墨烯與其基材效應之研究 The Synthesis of Graphene by Chemical Vapor Deposition Method and the Study on its Substrate Effect |
指導教授: |
陳福榮
Chen, Fu-Rong 蔡春鴻 Tsai, Chuen-Horng |
口試委員: |
李連忠
Li, Lain-Jong 莊鎮宇 Juang, Zhen-Yu |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 石墨烯 、銅 、化學氣相沉積法 、拉曼光譜 、電子背向散射繞射 、轉印 |
外文關鍵詞: | Graphene, Copper, Chemical Vapor Deposition, Raman spectroscopy, Electron backscatter diffraction (EBSD), Transfer print |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由碳原子組成的二維材料,在近年來已經吸引許多材料科學與凝聚態物理的注意以及研究。其中,化學氣相沉積法是最具前景的合成方法,可以降低生產成本,並合成出大面積、高品質的石墨烯。然而,在目前的研究中,石墨烯的成長機制與其基板效應尚未完全的了解。
在化學氣相沉積法中,我們利用兩種不同的生長條件來研究石墨烯成長於銅基板上,分別為石墨烯成長與熔融態的銅表面以及介電層材料與固態銅薄膜之介面。
論文的第一部分,我們利用銅箔在高溫下合成石墨烯,並結合了電子背向散射繞射與拉曼光譜,以非破壞性的分析技術局部的探測石墨烯的品質與銅基板的晶相。我們觀測到成長石墨烯的銅表面晶相會由兩種成長機制的互相競爭過程而取得最終的結果 (1)石墨烯影響銅表面晶相的重構,並形成以銅(100)取向的晶面出現於表面 (2)由主體再結晶而形成銅(111)面。石墨烯與銅基板的強作用力可以利用氧化亞銅薄膜的插層而減低其效應。研究發現,此氧化亞銅可以弱化石墨烯與銅箔基板的機械吸附力。因此,石墨烯的薄膜可以輕易的分離或者蝕刻並轉移至任何基板,而高單價的銅箔可以再使用成為石墨烯成長的基板。
在第二部分,我們成功合成高品質以及晶圓尺寸的石墨烯於絕緣介電層材料上。在這個研究上,我們發現碳原子不只會在銅表面裂解、形成石墨烯,並且會經由銅晶界擴散至銅薄膜與絕緣層的界面。我們利用高解析電子顯微鏡觀測銅薄膜與二氧化矽橫切面有石墨烯的薄膜,作為我們的直接證據。最佳化的參數可以得到連續與大面積的石墨烯薄膜直接成長在介電層材料上。這個方法可以使我們合成出晶圓尺寸的石墨烯在絕緣基板上,並且避免了濕式轉移製程。
關鍵字: 石墨烯、銅、化學氣相沉積法、拉曼光譜、電子背向散射繞射、轉印。
Graphene is a two dimensional material which attracted a lot of attention in materials science and condensed-matter physic. Chemical vapor deposition (CVD) is the most promising, inexpensive, large-area and readily accessible approach for high quality graphene. However, the growth mechanism between graphene and the substrate is still not well understood. Therefore, we studied two growth conditions for graphene by using copper as substrate, one was graphene grown on melting copper substrate, and the other was solid state copper substrate.
In the first part of the thesis, we synthesized graphene on the melting catalyst by using copper foil as substrate in high temperature process. On the other hand, we combine electron backscatter diffraction (EBSD) and Raman mapping as non-destructive characterization techniques to locally probe the interface between graphene and copper foils lattice without removing the graphene. We observed that the crystal structure of the Cu grains under graphene layers is governed by two competing processes: (1) graphene induced Cu surface reconstruction favoring the formation of Cu(100) orientation, and (2) recrystallization from bulk Cu favoring Cu(111) formation. The strong interaction between graphene and Cu could be decoupled by allowing the intercalation of a thin cuprous oxide interfacial-layer. The Cu2O layer is mechanically and chemically weak; hence, graphene films can be detached and transferred to arbitrary substrates and the Cu substrates may be re-used for graphene growth.
Secondly, we successfully synthesized a high-quality and wafer scale graphene thin layers on insulating gate dielectrics and studied the graphene growth condition on solid catalyst by using Cu thin film on dielectric substrate. In this work, we report that carbon species dissociated on Cu surfaces not only result in graphene layers on top of the catalytic Cu thin film but also diffuse through Cu grain boundaries to the interface between Cu and underlying dielectrics. The direct evidence for bottom layer graphene at the interface between copper and silicon dioxide was provided by high-magnification TEM in cross section view of the sample. Optimization of the process parameters leads to a continuous and large-area graphene thin layers directly formed on top of the dielectric. This method allows us to achieve wafer-sized graphene on versatile insulating substrates without the need of graphene transfer.
Key word: Graphene, Copper, Chemical Vapor Deposition, Raman spectroscopy, Electron backscatter diffraction (EBSD), and Transfer print.
1 Boehm, H. P., Setton, R. & Stumpp, E. Nomenclature and terminology of graphite intercalation compounds. Carbon 24, 241-245 (1986).
2 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater 6, 183-191 (2007).
3 Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60-63 (2007).
4 Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669 (2004).
5 Mikhail I, K. Graphene: carbon in two dimensions. Materials Today 10, 20-27 (2007).
6 Carlsson, J. M. Graphene: Buckle or break. Nat Mater 6, 801-802 (2007).
7 Hass, J., Heer, W. A. d. & Conrad, E. H. The growth and morphology of epitaxial multilayer graphene. Journal of Physics: Condensed Matter 20, 323202 (2008).
8 Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Reviews of Modern Physics 81, 109-162 (2009).
9 Schwierz, F. Graphene transistors. Nat Nano 5, 487-496 (2010).
10 Choi, W., Lahiri, I., Seelaboyina, R. & Kang, Y. S. Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences 35, 52-71 (2010).
11 Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chemical Reviews 110, 132-145 (2009).
12 Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
13 Peres, N. M. R. The transport properties of graphene. Journal of Physics: Condensed Matter 21, 323201 (2009).
14 Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201-204 (2005).
15 Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351-355 (2008).
16 Geim, A. K. Graphene: Status and Prospects. Science 324, 1530-1534 (2009).
17 Gusynin, V. P. & Sharapov, S. G. Unconventional Integer Quantum Hall Effect in Graphene. Physical Review Letters 95, 146801 (2005).
18 Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 8, 902-907 (2008).
19 Calizo, I., Balandin, A. A., Bao, W., Miao, F. & Lau, C. N. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters 7, 2645-2649 (2007).
20 Ghosh, S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters 92, 151911 (2008).
21 Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10, 569-581 (2011).
22 Frank, I. W., Tanenbaum, D. M., Zande, A. M. v. d. & McEuen, P. L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 2558-2561 (2007).
23 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321, 385-388 (2008).
24 Mattevi, C., Kim, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry 21 (2011).
25 Novoselov, K. S. et al. Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453 (2005).
26 Wu, Z.-S. et al. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47, 493-499 (2009).
27 Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8, 203-207 (2009).
28 Juang, Z.-Y. et al. Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 47, 2026-2031 (2009).
29 Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282-286 (2006).
30 Hummers, W. S. & Offeman, R. E. Preparation of Graphitic Oxide. Journal of the American Chemical Society 80, 1339-1339 (1958).
31 Dikin, D. A. et al. Preparation and characterization of graphene oxide paper. Nature 448, 457-460 (2007).
32 Bagri, A. et al. Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2, 581-587 (2010).
33 Su, C.-Y. et al. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. Acs Nano 5, 2332-2339 (2011).
34 Cano-Márquez, A. G. et al. Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Letters 9, 1527-1533 (2009).
35 Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877-880 (2009).
36 Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872-876 (2009).
37 Yu, Q. et al. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters 93, 113103 (2008).
38 Vlassiouk, I. et al. Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. Acs Nano, null-null (2011).
39 Reina, A. et al. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters 9, 30-35 (2008).
40 Reina, A. et al. Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C 112, 17741-17744 (2008).
41 Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706-710 (2009).
42 Li, X. et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 324, 1312-1314 (2009).
43 Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5, 574-578 (2010).
44 Yu, Q. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater 10, 443-449 (2011).
45 Srivastava, A. et al. Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials 22, 3457-3461 (2010).
46 Ismach, A. et al. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters 10, 1542-1548 (2010).
47 Lee, Y. et al. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters 10, 490-493 (2010).
48 Levendorf, M. P., Ruiz-Vargas, C. S., Garg, S. & Park, J. Transfer-Free Batch Fabrication of Single Layer Graphene Transistors. Nano Letters 9, 4479-4483 (2009).
49 Su, C.-Y. et al. Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters 11, 3612-3616 (2011).
50 Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters 9, 4268-4272 (2009).
51 Li, X. et al. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters 10, 4328-4334 (2010).
52 Blake, P. et al. Making graphene visible. Applied Physics Letters 91, 063124 (2007).
53 Roddaro, S., Pingue, P., Piazza, V., Pellegrini, V. & Beltram, F. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano Letters 7, 2707-2710 (2007).
54 Dresselhaus, M. S., Jorio, A. & Saito, R. Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. Annual Review of Condensed Matter Physics 1, 89-108 (2010).
55 Dresselhaus, M. S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Letters 10, 751-758 (2010).
56 Ferrari, A. C. et al. Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 97, 187401 (2006).
57 Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389-392 (2011).
58 Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339-341 (2009).
59 Lee, Y. et al. Wafer-Scale Synthesis and Transfer of Graphene Films. Nano Letters 10, 490-493 (2010).
60 Li, X. et al. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters 9, 4359-4363 (2009).
61 Juang, Z.-Y. et al. Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48, 3169-3174 (2010).
62 Ismach, A. et al. Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters (2010).
63 Lu, A.-Y. et al. Decoupling of CVD graphene by controlled oxidation of recrystallized Cu. RSC Advances 2, 3008-3013 (2012).
64 Wen, Y.-N. & Zhang, J.-M. Surface energy calculation of the fcc metals by using the MAEAM. Solid State Communications 144, 163-167 (2007).
65 Rasool, H. I. et al. Continuity of Graphene on Polycrystalline Copper. Nano Letters 11, 251-256 (2010).
66 Wofford, J. M., Nie, S., McCarty, K. F., Bartelt, N. C. & Dubon, O. D. Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects. Nano Letters 10, 4890-4896 (2010).
67 Frenken, J. W. M. & Veen, J. F. v. d. Observation of Surface Melting. Physical Review Letters 54, 134-137 (1985).
68 Chen, S. et al. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano 5, 1321-1327 (2011).
69 Dai, H., Thai, C. K., Sarikaya, M., Baneyx, F. & Schwartz, D. T. Through-Mask Anodic Patterning of Copper Surfaces and Film Stability in Biological Media. Langmuir 20, 3483-3486 (2003).
70 O'Reilly, M. et al. Investigation of the oxidation behaviour of thin film and bulk copper. Applied Surface Science 91, 152-156 (1995).
71 DasA et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nano 3, 210-215 (2008).
72 Ferralis, N., Maboudian, R. & Carraro, C. Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001). Physical Review Letters 101, 156801 (2008).
73 Mounet, N. & Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Physical Review B 71, 205214 (2005).
74 Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6, 30-33 (2010).