簡易檢索 / 詳目顯示

研究生: 謝昀紘
Hsieh, Yun-Hung
論文名稱: 應用於質子交換膜型燃料電池陰極之鉑合金觸媒製備及其性能研究
Preparation and characterization of Pt-based cathodic catalysts for PEMFC
指導教授: 彭宗平
Perng, Tsong-Pyng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 76
中文關鍵詞: PEMFCPt-based alloyNaBH4
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗係研究以鉑、釕和鈷三種金屬元素所形成之合金作為質子交換膜燃料電池陰極觸媒,觸媒的合成是以化學還原法直接將鉑合金還原在奈米碳管上,使用硼氫化鈉作為還原劑,鉑釕原子莫耳比固定為4:1,加入鈷金屬藉以提升此觸媒在陰極氧氣還原反應之效率。
      觸媒的擔體則選擇以多壁奈米碳管作為自製觸媒之擔體,但未施予任何表面處理之多壁奈米碳管其表面結構較為完整,觸媒不易沉積分布在碳管表面,因此,乃藉由硝酸和硫酸與奈米碳管反應俾在奈米碳管表面產生缺陷或有機官能基,使觸媒較易沉積分布在奈米碳管表面。經表面修飾之奈米碳管其物化性質藉由比表面積測試儀、拉曼光譜儀和傅立葉轉換紅外線光譜儀來分析。所有觸媒的組成和性質則藉由X光繞射儀、穿透式電子顯微鏡、感應耦合電漿質譜儀、循環伏安法和膜電極組測試來分析。
      結果顯示,所有鉑合金奈米粒子都可藉由硼氫化鈉成功地還原,但是,除了鉑釕鈷合金之外的奈米粒子都會聚集在奈米碳管表面缺陷處。鉑釕合金和鉑釕鈷合金的顆粒大小在4 nm左右。在單電池效率測試結果顯示,商用電極具有較高之效率(0.33W/cm2),自製之鉑釕合金(pH=10)和(pH=11)觸媒電極之效率分別為0.21W/cm2和0.19W/cm2,自製之鉑金屬和鉑釕鈷合金之效率都低於0.05W/cm2。這些觸媒效率的差異可能係由合金之顆粒大小、分散性和合金中鉑金屬的含量等因素所造成。在以下全文中將會討論到自製觸媒之特性以及各種分析結果。


    A series of Pt-based alloys consisting of Pt, Ru and Co were used as cathodic catalysts for proton exchange membrane fuel cell (PEMFC). The catalysts were synthesized and deposited on multiwalled carbon nanotubes (MWCNTs) directly by chemical reduction using NaBH4 as reducing agent. The atomic ratio of Pt and Ru was fixed at 4:1. By adding Co to the alloy, it was expected that the performance of catalysts in the cathodic oxygen reduction reaction may be improved.
    MWCNTs were used as the support of catalysts. However, the original surface was inert and not easy to be deposited with catalysts. By reaction with HNO3 and H2SO4, the surface of MWCNTs could generate defects or organic functional groups so that catalysts could be deposited and dispersed on the surface. The physical and chemical properties of modified MWCNTs were analyzed by BET, Raman, and FTIR. The composition and properties of all catalysts were analyzed by XRD, TEM, ICP-MS, CV, and MEA test.
    The result shows that all of the Pt-based nanoparticles except the Pt4Ru1Co5 could be prepared by reduction with NaBH4 and they all aggregated on the surface defects of MWCNTs. The particle sizes of Pt4Ru1 and Pt4Ru1Co5 catalysts were both around 4 nm. The maximum output powers of Pt4Ru1/CNT (pH=10) and (pH=11) were 0.21 W/cm2 and 0.19 W/cm2, respectively, while that of E-TEK was 0.33 W/cm2. The maximum powers of Pt/CNT and Pt4Ru1Co5/CNT were both below 0.05 W/cm2. The difference of performance may result from the dispersion of particles, particle size, and the Pt content in the catalysts. The characterization and analyses of all home-made catalysts are also discussed.

    摘要 Abstract 誌謝 Contents Chapter I. Introduction 8 1-1 The Development of Fuel Cell 8 1-2 Categories of Fuel Cell 9 1-3 Applications of Fuel Cell 10 Chapter II. Literature Review 13 2-1 Basic Principle of PEMFC 13 2-1-1 The characteristic of thermodynamics 13 2-1-2 The characteristic of kinetics 17 2-2 PEMFC 19 2-2-1 Schematic of PEMFC 19 2-2-2 MEA 19 2-2-3 PEM 20 2-2-4 GDL 20 2-2-5 Catalyst Layer 24 2-3 Catalyst 24 2-3-1 Anode 24 2-3-2 Cathode 25 2-3-2-1 Carbon supported Pt-Ru catalysts 26 2-3-3 Support 28 2-3-3-1 Surface modification of carbon nanotubes 29 2-4 Metal Deposition for PEMFC 30 Chapter III. Experimental 34 3-1 Materials 34 3-2 Analytical Instruments 34 3-3 Experiment Procedures 37 3-3-1 Surface modification of MWCNTs 37 3-3-2 Synthesis of Pt on MWCNTs by reduction with NaBH4 37 3-3-3 Synthesis of Pt4Ru1 and Pt4Ru1Co5 on MWCNTs by reduction with NaBH4 39 3-3-4 Cyclic Votammetry measurement 42 3-3-5 Preparation of membrane electrode assembly 42 3-3-6 PEMFC single cell testing 43 Chapter IV. Results and Discussion 48 4-1 Characterization of MWCNTs 48 4-2 Deposition of Pt, Pt4Ru1, and Pt4Ru1Co5 on MWCNTs by reduction with NaBH4 53 4-2-1 XRD analysis 53 4-2-2 TEM analysis 56 4-2-3 ICP and EDS analyses 64 4-2-4 CV analysis 64 4-2-5 I-V test 67 Chapter V. Conclusions 71 References 72

    [1] J. O’M Bockris and S. Srinivasan, “Fuel Cells: Their electrochemistry,” McGraw-Hill (1969).
    [2] G. Hoogers, “Fuel Cell Technology Handbook,” CRC Press, London and New York (2003).
    [3] L. Carrette, K. A. Friedrich, and U. Stimming, Chem. Phys. Chem., 1 (2000) 162.
    [4] EG & G Technical Services, Inc., “Fuel Cell Handbook (6th edition),” U.S. Department of Energy (2002).
    [5] http://world.honda.com/.
    [6] "Honda FCX” http://world.honda.com/FuelCell/ FCX/overview/layout.
    [7] Fuel Cell Handbook (Seventh Edition) by EG&G Technical
    Services, Inc.
    [8] S. Lister and G. McLean, J. Power Sources, 130 (2004) 61-67.
    [9] S. Church, "Del. firm installs fuel cell", The News Journal, (2006).
    [10] http://www.personalweb.unito.it/gabriele.ricchiardi/Dati/ECCC-1/nafion.html.
    [11] C. Heitner-Wirguin, J. Membrane Sci., 120 (1996) 1-33.
    [12] K. A. Mauritz and R. B. Moore, Chem. Rev., 104 (2004) 4535-4585.
    [13] Source: DOE Energy Efficiency and Renewable Energy: http://www.eere.energy.gov/.
    [14] L. Xiong and A. Manthiram, Electrochim. Acta, 50 (2005) 3200–3204.
    [15] S. Gottesfeld and T. A. Zawodzinski, Polymer electrolyte fuel cells, in: R.C. Alkire, H. Gerischer, D.M. Kolb, and C.W. Tobias (Eds.), Advances in Electrochemical Science and Engineering, vol. 5, 1st ed.,Wiley-VCH,Weinheim, (1997).
    [16] A. J. Appleby, in: R. Dudley, W. O’Grady, and S. Srinivasan (Eds.), The Electrocatalysis of Fuel Cell Reactions, The Electrochemical Society Softbound Proceedings Series, PV 79-2, Princeton, NJ, (1979).
    [17] G. Hoogers, “Fuel Cell Technology Handbook,” CRC Press, London and New York (2003).
    [18] K. Y. Chan, J. Ding, J. Ren, S. Cheng, and K. Y. Tsang, J. Mater. Chem., 14 (2004) 505.
    [19] V. Jalan and E. J. Taylor, J. Electrochem. Soc., 130 (1983) 2299.
    [20] M. T. Paffett, G. J. Berry, and S. Gottesfeld, J. Electrochem. Soc., 135 (1988) 1431.
    [21] S. Mukerjee, S. Srinivasan, M. P. Soriaga, and J. McBreen, J. Electrochem. Soc., 142 (1995) 1409.
    [22] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, J. Electrochem. Soc., 146 (1999) 3750.
    [23] M. Min, J. Cho, K. Cho, and H. Kim, Electrochim. Acta, 45 (2000) 4211.
    [24] A. K. Shukla, M. Neergat, P. Bera, V. Jayaram, and M. S. Hedge, J. Electroanal. Chem., 504 (2001) 111.
    [25] C. C. Chien and K. T. Jeng, Mater. Chem. Phys., 99 (2006) 80-87.
    [26] E. Antolini, Mater. Chem. Phys., 78 (2003) 563-573.
    [27] P. H. Fernández, S. Rojas, P. Ocón, J. L. G. de la Fuente, P. Terreros, M. A. Peña, and J. L. G. Fierro, Appl. Catal. B: Environmental, 77 (2007) 19-28.
    [28] Q. Huang, H. Yang, Y. Tang, T. Lu, and D. L. Akins, Electrochem. Comm., 8 (2006) 1220-1224.
    [29] E. Antolini, J. R. C. Salgado, M. J. Giz, and E. R. Gonzalez, Int. J. Hydrogen Energy, 30 (2005) 1213-1220.
    [30] L. Xiong and A. Manthiram, Electrochim. Acta, 50 (2005) 2323-2329.
    [31] J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, J. Power Sources, 138 (2004) 56-60.
    [32] F. H. B. Lima, W. H. Lizcano-Valbuena, E. Teixeira-Neto, F. C. Nart, F. R. Gonzalez, and E.A. Ticianelli, Electrochim. Acta, 52 (2006) 385-393.
    [33] F. Maillard, M. Martin, F. Gloaguen, and J. M. Leger, Electrochim. Acta, 47 (2002) 3431.
    [34] E. Antolini, J. R. C. Salgado, L. G. R. A. Santos, G. Garcia, E. A. Ticianelli, E. Pastor, and E. R. Gonzalez, J. Appl. Electrochem., 36 (2006) 355-362.
    [35] W. Li, W. Zhou, H. Li, Z. Zhou, B. Zhou, G. Sun, and Q. Xin, Electrochim. Acta, 49 (2004) 1045-1055.
    [36] F. Maillard, M. Martin, F. Gloaguen, and J. M. Leger, Electrochim. Acta, 47 (2002) 3431.
    [37] K. Sasaki, Y. Mo, J. X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, and R. R. Adzic, Electrochim. Acta, 48 (2003) 3841.
    [38] F. A. Uribe and T. A. Zawodzinski Jr., Electrochim. Acta, 47 (2002) 3799.
    [39] L. Bednarova, C. E. Lyman, E. Rytter, and A. Holmen, J. Catal., 211 (2002) 335-346.
    [40] Y. Guo, Y. Zheng, and M. Huang, Electrochim. Acta, 53 (2008) 3102-3108.
    [41] B. Moreno, E. Chinarro, J. C. Pérez, and J. R. Jurado, Appl. Catal. B: Environmental, 76 (2007) 368-374.
    [42] A. Freund, J. Lang, T. Lehmann, and K. A. Starz, Catal. Today, 27 (1996) 279.
    [43] X. Zhang, F. Zhang, and K. Y, Chan, Catal. Comm., 5 (2004) 749-753.
    [44] B. Gurau, R. Viswanathan, R. X. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, T. E. Mallouk, and S. Sarangapani, J. Phys. Chem. B, 102 (1998) 9997.
    [45] N. Jha, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 32 (2007) 425-429.
    [46] P. N. Ross, K. Kinoshita, A. J. Scarpellino, and P. Stonehart, J. Electroanal. Chem., 63 (1975) 97.
    [47] K. V. Ramesh, P. R. Sarode, S. Vasudevan, and A. K. Shukla, J. Electroanal. Chem., 223 (1987) 91.
    [48] E. Ticianelli, J. G. Beery, M. T. Paffett, and S. Gottesfeld, J. Electroanal. Chem., 258 (1989) 61.
    [49] N. Jha, A. L. M. Reddy, M. M. Shaijumon, N. Rajalakshmi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 33 (2008) 427-433.
    [50] A. L. Ocampo, M. Miranda-Hernández, J. Morgado, J. A. Montoya, and P. J. Sebastian, J. Power. Sources, 160 (2006) 915-924.
    [51] R. Yu, L. Chen, Q. Liu, J. Lin, K. L. Tan, S. C. Ng, H. S. O. Chan, G. Q. Xu, and T. S. Andy Hor, Chem. Mater., 10 (1998) 718-722.
    [52] Z. Liu, X. Lin, J. Y. Lee, W. Zhang, M. Han, and L. M. Gan, Langmuir, 18 (2002) 4054-4060.
    [53] C. R. K. Rao and D. C. Trivedi, Coord. Chem. Rev., 249 (2005) 613-631.
    [54] O. P. Yadav, A. Palmqvist, N. Cruise, and K. Holmberg, Colloid Surface Physicochem. Eng. Aspect., 221 (2003) 131-134.
    [55] H. C. Ma, X. Z. Xue, J. H. Liao, C. P. Liu, and W. Xing, Appl. Surf. Sci., 252 (2006) 8593-8597.
    [56] C. C. Chien and K. T. Jeng, Mater. Chem. and Phys., 99 (2006) 80-87.
    [57] J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, J. Power Sources, 141 (2005) 13-18.
    [58] E. P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi, and P. Spinelli, Int. J. Hydrogen Energy, 33 (2008) 3142-3145.
    [59] J. Chen, M. Wang, X. Liu, Z. Fan, K. Cui, and Y. Kuang, J. Phys. Chem. B, 110 (2006) 11775-11779.
    [60] 郭政肇,“小型質子交換膜燃料電池白金觸媒研究,”清華大學材料所論文 (2001).
    [61] G. Lalande, M. C. Denis, D. Gauy, J. P. Dodelet, and R. Schulz, J. Alloys Comp., 292 (1999) 301.
    [62] K. Shirlaine, Y. Chengfei, M. Prasanna, S. Ratndeep, and S. Peter, J. Power Sources, 172 (2007) 50-56.
    [63] S. L. Gojkovic, T. R. Vidakovic, and D. R. Durovic, Electrochim. Acta 48 (2003) 3607.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE