簡易檢索 / 詳目顯示

研究生: 朱宏章
Hung-Zhung Zhu
論文名稱: CMOS主動及被動微波積體電路設計
CMOS-based Microwave Active and Passive Circuit Design
指導教授: 徐碩鴻
Shuo-Hung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 78
中文關鍵詞: Interconnectcoupled resonatorsBalanced Amplifier
外文關鍵詞: 傳輸線, 耦合式共振腔, 平衡式放大器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    縮小元件的尺寸藉以提昇電路及整個系統的效能已經成為主要努力的目
    標。然而縮小元件尺寸雖然帶來不少利益,卻也會造成積體電路之間的傳輸效應
    某種程度的損耗。其間如寄生的電阻、電容和電感效應將會開始影響電路的效
    能,此效應在深次微米ULSI 技術尤其顯著。在第二章中,將討論各種CMOS
    積體電路間傳輸線的結構,以更了解各種結構間的損耗及延遲。
    隨著操做頻率不斷提高,微波積體電路結構將迫切需要高品質因數的被動元
    件,例如些高效能、高穩定度的濾波器以及低相位雜訊的振盪器。此外,將微波
    積體電路和CMOS 製程結合以降低成本已經是現在積體電路設計者的主要目
    標。在第三章中,以CMOS 製程設計一高品質因數的多重耦合共振腔濾波器。
    其量測出之loaded 及unloaded Q 分別為38 及83。
    在第四章中,利用CMOS 製程設計一具有相當高效能的平衡式放大器。3dB
    藍基耦合器也藉由多層金屬的CMOS 製程設計出。此平衡式放大器的操作頻寬
    為7.5 GHz,而其增益為18-21 dB。


    ABSTRACT
    To enhance the circuit and system performance, the major effort has been
    focused on improving the device speed through scaling of device dimensions. The
    decrease in minimum feature size of devices has led to a property decrease in
    interconnect cross-sectional area and pitch. The parasitic resistance, capacitance, and
    inductance associated with interconnects are beginning to influence the circuit
    performance and the evolution of deep sub-micron ULSI technology. Therefore, in
    chapter 2, variable structures of Si-based IC interconnects are discussed, and a deeper
    understanding of the loss and delay characteristics is obtained. The trade-offs of
    different designs are also addressed.
    As operation frequency keep increasing, microwave IC structures have suffered
    from a lack of high Q miniature passive elements, which have applications such as
    high-performance filters and low-phase noise oscillators. Furthermore, that millimeter
    microwave integrated-circuit combine with CMOS technology to decrease cost is the
    current trend for MMIC design. In chapter 3, a high Q, multiple-ring resonant filter is
    designed in a standard 0.18 µm CMOS process. The measurement results show a
    loaded and unloaded Q of 38 and 83, respectively.
    In chapter 4, a high-performance Ka-band balanced amplifier is designed in a
    standard 0.18 µm. A 3-dB Lange coupler is designed using the multiple-interconnect
    process of CMOS. A bandwidth of 7.5 GHz and a maximan gain of 21 dB are
    obtained.

    Abstract Figure captions Table captions Chapter І Introduction І.1 Motivation 1 Chapter ІІ Interconnect application of microwave in deep submicro CMOS technology ІІ.1 Introduction 3 ІІ.2 The physics of interconnects 4 ІІ.2.1 Multimoding 4 ІІ.2.2 Dispersion 4 ІІ.2.3 frequency — dependent charge distribution 6 ІІ.2.4 Primary transmission line constants 7 ІІ.2.5 Pulse propagation 8 ІІ.3 Microstrip design 9 ІІ.3.1 Formulas for static-TEM design calculation 10 ІІ.3.2 Field solution 11 ІІ.3.3 Approximation calculation accounting for dispersion 13 ІІ.4 Coplanar transmission line design 14 ІІ.4.1 CPW formulas for accurate calculation 15 ІІ.4.2 Loss mechanisms of CPW 16 ІІ.4.3 ACPS design issues 20 ІІ.5 Analysis of interconnect simulation and measurement 20 ІІ.6 Summary 33 Chapter ІІІ Filters using coupled resonators 34 ІІІ.1 Introduction 34 ІІІ.2 Series and parallel resonant circuits 34 ІІІ.2.1 Series resonant circuit 34 ІІІ.2.2 Parallel resonant circuit 38 ІІІ.3 Planar microstrip resonant structures 41 ІІІ.3.1 Closed-Loop and Closed-Loop ring resonators 40 ІІІ.4 W-band multiple-ring resonant filter by standard 0.18 μm CMOS technology 42 ІІІ.4.1. Design consideration in standard CMOS process 43 ІІІ.4.2. Design and optimization of multiple-ring resonator 44 ІІІ.4.3. Layout and measurement results 46 ІІІ.5 Summary 50 Chapter ІV Balanced Amplifier Design By CMOS Technology 51 ІV.1 Introduction 51 ІV.2 Parallel coupling lines and directional couplers 51 ІV.3 The lange coupler design 56 ІV.4 Balanced amplifier 58 ІV.5 Ka-band Balanced amplifier design by 0.18μm CMOS process 61 ІV.5.1 90° hybird coupler design 63 ІV.5.2 Balanced amplifier design 66 ІV.6 Summary 71 Chapter V Conclusions 73 References 75

    [1] H. A. Wheeler, ‘Transmission-line properties of parallel wide strips by a conformal mapping approximation,’ IEEE Trans. Microwave Theory and Techn., Vol. 12, May 1964, pp. 280-289
    [2] H. A. Wheeler, ‘Transmission-line properties of parallel strips separated by a dielectric sheet,’ IEEE Trans. Microwave Theory and Techn., Vol. 13, Mar. 1965, pp. 172-185
    [3] E. O. Hammerstad, and F. Bekkadal, ‘ A microstrip handbook,’ ELAB Report, STF44A74169, University of Trondheim, Norway, Feb. 1975.
    [4] L. W. Cahill, ‘ Approximate formulas for microstrip transmission lines,’ Proc. Institute of Radio Engineers, Vol. 3, Oct. 1974, pp. 317-321.
    [5] T. Itoh, and R. Mittra, ‘Spectral-domain approach for calculating the dispersion characteristics of microstrip lines,’ IEEE Trans. Microwave Theory and Techn., Vol. 21, No. 7, July 1973, pp. 496-499
    [6] T. Itoh, and R. Mittra, ‘A technique for computing dispersion characteristics of shielded microstrip lines,’ IEEE Trans. Microwave Theory and Techn., Vol. 22, Oct. 1974, pp. 896-898
    [7] M. Kirschning, and R. H. Jansen, ‘Accurate model for effective dielectric constant of microstrip with validity up to millimeterwave frequencies,’ Electron. Lett., 18 Mar. 1982, pp. 272-273
    [8] W. Hilberg, ‘From approximations to exact relations for characteristic impedances,’ IEEE Trans. Microwave Theory and Techn., Vol. 17, May 1969, pp. 259-265
    [9] K. C. Gupta, R. Garg, I. J. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd ed., Artech House, Norwood, MA, 1996.
    [10] Jiming Song, Feng Ling, G. Flynn, W. Blood, E. Demircan, ‘A de-embedding technique for interconnects,’ Electrical Performance of Electronic Packaging, 2001 29-31 Oct. 2001 Page(s):129 - 132
    [11] W.R. Eisenstadt, Y. Eo, ‘S-parameter-based IC interconnect transmission line characterization’ Components, Hybrids, and Manufacturing Technology, IEEE Transactions on Volume 15, Issue 4, Aug. 1992 Page(s):483 – 490
    [12] R. E. Collin, Foundations for Microwave Engineering, Second Edition, McGraw-Hill, N.Y., 1992.
    [13] M. N. Afsar, D. Hanyi; “A new open resonator method for the measurement of dielectric permittivity and loss tangent of low absorbing materials at 60 GHz” Infrared and Millimeter Waves, 2000. Conference Digest. 2000 25th International Conference on , 12-15 Sept. 2000
    [14] K. Chang, T. S. Martin, F. Wang, and J. L. Klein, “On the study of microstrip ring and varactor-tuned circuits,” IEEE Trans. Microwave Theory Tech., vol. MTT-35, pp. 1288–1295, Dec. 1987.
    [15] J. Wenger, U. Guttich, “Ka- and W-band PM-HFET DROs” Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters] , Volume: 3 , Issue: 6 , June 1993 Pages:191 - 193
    [16] T. C. Ho, S. Chen, S. Tadayon, K. Pande, P. Rice, M. Ghahremani, “A high-performance W-band integrated source module using GaAs monolithic circuits” Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters] , Volume: 4 , Issue: 7 , July 1994 Pages:241 - 243
    [17] L. Dussopt, D. Guillois, G. M. Rebeiz, “ A low phase noise silicon 9 GHz VCO and an 18 GHz push-push oscillator” Microwave Symposium Digest, 2002 IEEE MTT-S International , Volume: 2 , 2-7 June 2002
    [18] Y. T. Lee, J. S. Lim, C. S. Kim D. Ahn, S. Nam, “A compact-size microstrip spiral resonator and its application to microwave oscillator” Microwave and Wireless Components Letters, IEEE [see also IEEE Microwave and Guided Wave Letters] , Volume: 12 , Issue: 10 , Oct. 2002
    [19] Y. T. Lee, J. S. Lim, S. Kim, J. Lee, S. Nam, K. S. Seo, D. Ahn, “Application of CPW based spiral-shaped defected ground structure to the reduction of phase noise in V-band MMIC oscillator” Microwave Symposium Digest, 2003 IEEE MTT-S International , Volume: 3 , 8-13 June 200
    [20] C. E. Saavedra, “Microstrip ring resonator using quarter-wave couplers” Electronics Letters , Volume: 37 , Issue: 11 , 24 May 2001
    [21] A. R. Brown, G. M. Rebeiz, “A Ka-band micromachined low-phase-noise oscillator” Microwave Theory and Techniques, IEEE Transactions on ,Volume: 47 , Issue: 8 , Aug. 1999 Pages:1504 - 1508
    [22] V. Milanovic, M. Gaitan, E. D. Bowen, N. H. Tea, M. E. Zaghloul, “Design and fabrication of micromachined passive microwave filtering elements in CMOS technology” Solid State Sensors and Actuators, 1997. TRANSDUCERS '97 Chicago., 1997 International Conference on , Volume: 2 , 16-19 June 1997
    [23] K. Leong, J. Mazierska, J. Krupka, “Measurements of unloaded Q-factor of transmission mode dielectric resonators” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 3 , 8-13 June 1997
    [24] R. Grag, and I. J. Bahl, ‘Characteristics of coupled microstriplines,’ IEEE Trans.
    Microwave Theory and Techn., Vol. 27, July 1979, pp. 700-705
    [25] R. Grag, Private communication concerning coupled-line formulas, 1980
    [26] W. P. Ou, ‘Design equations for interdigitated directional coupler,’ IEEE Trans.
    Microwave Theory and Techn., Vol. 19, Feb. 1975, pp. 253-255
    [27] R. M. Osmani, ‘Synthesis of Lange couplers,’ IEEE Trans. Microwave Theory and Techn., Vol. 29, Feb. 1981, pp. 168-170
    [28] W. P. Ou, ‘Design equations for interdigitated directional coupler,’ IEEE Trans. Microwave Theory and Techn., Vol. 19, Feb. 1975, pp. 253-255
    [29] R. M. Osmani, ‘Synthesis of Lange couplers,’ IEEE Trans. Microwave Theory and Techn., Vol. 29, Feb. 1981, pp. 168-170
    [30] T. Imaoka, S. Banba, A. Minakawa, N. Imai, ‘Millimeter-wave wide-band amplifiers using multilayer MMIC technology’ IEEE Trans. Microwave Theory and Techn., Vol. 45, JAN. 1997, pp. 95-101
    [31] P. Huang, W. L. Jones, A. Oki, D. Streit, W. Yamasaki, P. Liu, S. Bui, B. Nelson, ‘A 9-16 GHz monolithic HEMT low noise amplifier with embedded limiters’ Microwave and Millimeter-Wave Monolithic Circuits Symposium, 1995. Digest of Papers., IEEE 1995 15-16 May 1995, pp. 185 - 186
    [32] Y. C. Chou, D. Leung, R. Lai, J. Scarpulla, M. Barsky, B. Groundbacher, D. Eng, P. H. Liu, A. Oki, and D. C. streit, ‘High reliability of 0.1um InGaAs/ InAlAs/InP HEMT MMICs on 3inch InP production process’ Electron Device Letters, IEEE Vol. 24, Issue 6, June 2003, pp. 378 - 380
    [33] J.C. Vaz, J.C. Freire, ‘Millimeter-wave monolithic power amplifier for mobile broad-band systems’ IEEE Trans. Microwave Theory and Techn., Vol. 49, JUNE. 2001, pp. 1211-1215
    [34] B. L. Nelson, C.B. Perry, R. Dixit,; B. R. Allen, M. E. Kim, A. K. Oki, J. B. Camou, D. K. Umemoto, ‘High-linearity, low DC power GaAs HBT broadband amplifiers to 11 GHz’ Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1989. Technical Digest 1989., 11th Annual 22-25 Oct. 1989, pp. 79-82

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE