研究生: |
林郁格 Lin, Yuh-Ger |
---|---|
論文名稱: |
遭受外加垂直震動下單一沸騰通道雙相流循環 迴路之非線性動態分析 The nonlinear dynamic analysis of a single boiling channel two-phase circulation loop under external vertical vibration condition |
指導教授: |
陳紹文
Chen, Shao-Wen 李進得 Lee, Jin-Der |
口試委員: |
林唯耕
Lin, Wei-Keng 王仲容 Wang, Jong-Rong |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 沸騰通道 、穩定性邊界 、自然頻率 、共振效應 、非線性分析 |
外文關鍵詞: | Boiling channel, natural frequency, resonance, vertical acceleration, nonlinear anaylsis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先發展在外加垂直震動下強制對流單一沸騰通道分析模式,接著建立反應器爐心以外各組件分析模式,並結合點中子動態模式與燃料棒熱傳導模式,茲以建立在外加垂直震動下進步型沸水式反應器(ABWR)單一沸騰通道自然循環迴路的非線性分析模式。
本研究在加入外部垂直加速度下,探討在外部震盪影響下,系統在不同運轉條件所產生的非線性現象。本文先以非線性分析方法建立系統的穩定性圖譜,再探討系統穩定區域內各穩定點的自然頻率,即共振頻率,之分佈,並據以探討各穩定點的共振效應。本研究分析發現系統穩定區域內之自然頻率數值,落在地震記錄最常被觀測到的震波頻率範圍內,f =0.1 Hz~20Hz,須注意外部地震波對系統安全與穩定運轉之影響。然而,在ABWR的正常運轉點與自然循環點並不會引發劇烈的共振振盪,其是非常穩定的運轉點。此外,當穩定操作點越靠近穩定性邊界時,若加入的外部震盪頻率與當下系統運轉條件之自然頻率相符時,外部震盪導致之共振效應可能造成系統產生不穩定的發散震盪。
本研究亦發展解析及重組實際地震波的方法,可適當模擬真實地震波,並比較真實地震波與模擬地震波對系統所造成之非線性震盪,發現兩者趨勢相當吻合,共振效應會主導其非線性行為。
另一方面,本研究亦進行參數效應之靈敏度分析,結果顯示降低地震對雙相流影響行為的方式有:縮短加熱段管長、增加加熱段管徑、增加進口流阻,降低出口流阻、遠離穩定性邊界及避免共振的發生。
The present study adopts the single nuclear-coupled boiling channel model integrated with external vertical seismic accelerations to investigate the seismic-induced effect on a single nuclear-coupled boiling channel system. Furthermore, a nonlinear model of natural circulation loop in response to the components in ABWR has also been developed for analyzing the effect of seismic accelerations. The nonlinear dynamics and stabilities of a single nuclear-coupled boiling channel and the natural circulation loop are investigated. The void-reactivity feedback would destabilize the system as that reported in the literatures. The natural frequencies of the stable states are widely explored. The results indicate that the natural frequency of initial state could depend on the parameters of phase change number relative to the operating power and subcooling number representing for the condition of inlet subcooling. It tends to increase as the increase in the phase change number or the decrease in the subcooling number. Notably, the system natural frequencies distributed in the stable region are located within the common range of seismic vibration frequency. For the concern of reactor safety, the present study investigates the seismic-induced resonance effect on the nuclear-coupled boiling channel system. The results illustrate that the resonance oscillations could be triggered if the external vibration frequency is the same as the system natural frequency. Moreover, the strength of resonance effect may depend on the inherent stability characteristics of the initial states.
Sensitivity analysis of system parameters, such as length, diameter, inlet/outlet flow resistance, of heated channel, and seismic vibration characteristics have been investigated. The results indicate that the seismic induced oscillations of the single channel system and circulation loop system, in general, could be stabilized by changing several parameters as below:
Decreasing heated length and outlet flow resistance
Increasing diameter and inlet flow resistance
Keep the operating condition (Npch & Nsub) away from the stability boundary
[1] 林永能, “沸騰通道之非線性熱流分析,” 碩士論文, 國立清華大學核子工程研究所, 1994。
[2] 李進得, “雙相流非線性模式的發展與應用”, 博士論文, 國立清華大學工程與系統科學系, 2000。
[3] Achard, L. L., Drew D. A. and Lahey, Jr., R. T., “The Analysis of Nonlinear Density-Wave Oscillations in Boiling Channels,” Journal of Fluid Mechanics, Vol. 155, pp.213-232, 1985.
[4] March-Leuba, Cauci, D. G. and Perez, R. B., “Nonlinear Dynamics and Stability of Boiling Water Reactors: Part 1-Quantitative Analysis,” Nucl. Sci. Eng., Vol. 93, pp.111-123, 1986a.
[5] March-Leuba, Cauci, D. G. and Perez, R. B., “Nonlinear Dynamics and Stability of Boiling Water Reactors: Part-2-Quantitative Analysis,” Nucl. Sci. Eng., Vol. 93, pp.124-136, 1986b.
[6] Domiano, B., March-Leuba, J. A., and Euler, J. A., “Application of Galerkin’s Method to Calculate the Behavior of Boiling Water Reactors During Limit-Cycle Oscillations,” Nuclear Science and Engineering, Vol. 113, pp.271-281, 1993.
[7] Borkowski, J. E., Robinson, G. E., Baratta, A. J., and Kattic, M., “Time Domain Model Sensitivity in Boiling Water Reactor Stability Analysis Using TRAC-BF1,” Nuclear Technology, Vol. 103, pp.34-48, 1993.
[8] Rizwan-Uddin, “On Density-Wave Oscillation in Two-Phase Flows,” Int. J. Multiphase Flow, Vol. 20, No.4, pp.712-737, 1994.
[9] Karve, A. A., Rizwan-Uddin and Doring, J. J., ’ “Stability Analysis of BWR Nuclear-Coupled Thermal-Hydraulic Using a Simple Model,” Nuclear Engineering and Design, Vol. 177, pp.155-177, 1997.
[10] Clausse, A. and Lahey, Jr. R. T., “An Investigation of Periodic and Strange Attractors in Boiling Flows Using Chaos Thoery,” Proc. 9th Int. Heat Transfer Conf., Jerusalem, Vol. 2, pp.3-8, 1990.
[11] Hirano, M., and Tamakoshi, T., “An analytical study on excitation of nuclear-coupled thermal hydraulic instability due to seismically induced resonance in BWR,” Nuclear Engineering and Design, Vol. 162, pp. 307–315, 1996.
[12] Satou, A., Watanabe, T., Maruyama, Y., and Nakamura, H., “Neutron-coupled thermal hydraulic calculation of BWR under seismic acceleration,” Progress in Nuclear Science and Technology, Vol. 2, pp. 120-124, 2011.
[13] Watanabe, T., “On the numerical approach for simulating reactor thermal hydraulics under seismic conditions,” Annals of Nuclear Energy, Vol. 49, pp. 200–206, 2012.
[14] Misawa, T., Yoshida, H., and Takase, K., “Development of an analytical method on water-vapor boiling two-phase flow characteristics in BWR fuel assemblies under earthquake condition,” in: Mesquita, A. (Ed.), Nuclear Reactors. InTech, pp.157-174, 2012.
[15] Lee, J.D., Chen, S.W., and Pan, C., “The effect of external vertical acceleration on the dynamic behaviors of a single nuclear-coupled boiling channel,” Nuclear Engineering and Design, Vol. 301, pp. 264–278, 2016.
[16] Chen, S. W., Hibiki, T., Ishii, M., and Watanabe, F., “Experimental Investigation of Vibration Effects on Subcooled Boiling Two-Phase Flow in an Annulus,” 7th International Conference on Multiple Flow, Tampa, FL USA, 2010.
[17] Chen, S. W., Hibiki, T., Ishii, M., Mori, M., and Watanabe, F., “Experimental Study of Adiabatic Two-Phase Flow in an Annular Channel Under Low-Frequency Vibration,” Journal of Engineering for Gas Turbines and Power, Vol. 136, No.032501, 2014.
[18] Lin, Y. N., Lee, J. D., and Pan, C., “Nonlinear Dynamics of a Nuclear-Coupled Boiling Channel with Forced Flow,” Nuclear Engineering and Design, Vol. 179, pp. 31-49, 1998.
[19] Taiwan Power Company, “Lungmen Nuclear Power Station Units 1 & 2,” Preliminary safety analysis report, Taipei, Taiwan, 1997.
[20] Kahaner, D., Moler, C., and Nash, S., “Numerical Methods and Software,” Prentice Hall, 1989.
[21] Saha, P., Ishii, M., and Zuber, N., “An experimental investigation of thermally induced flow oscillations in two phase systems,” J. Heat Trans., Vol. 98, pp. 616–622, 1976.
[22] Dykhuizen, R. C., Roy, R. P. and Kalra, S. P., “A Linear Time-Domain Two-Fluid Model Analysis of Dynamic Instability in Boiling Flow Systems,” Journal of Heat Transfer, Vol. 108, pp.100-108, 1986a.
[23] Dykhuizen, R. C., Roy, R. P. and Kalra, S. P., “Two-Fluid Model Simulation of Density-Wave Oscillation in a Boiling Flow System,” Nuclear Science and Engineering, Vol. 94, pp.197-179, 1986b..
[24] Boure, J.A., Bergles, A.E. and Tong, L.S., “Review of two-phase flow instability,” Nuclear Engineering and Design, Vol. 25, pp. 165–192, 1973.
[25] USGS, 2014, “Earthquake facts,” http://earthquake.usgs.gov/learn/facts.php.
[26] Mitsubishi Heavy Industries, “FINDS: Mitsubishi PWR Fuel Assemblies Seismic Analysis Code,” Japan, pp. 5-11-5-14, 2008.
[27] http://www.csie.ntnu.edu.tw/~u91029/Wave.html.
[28] Virginia Electric and Power Company (Dominion), “Summary of Excerpted Portions of the Root Evaluation – Dual Unit Trip Following Magnitude 5.8 Earthquake North Anna Power Station ,” Root Cause Evaluation RCE001061 Rev 1, Washington, D.C., United States.
[29] https://en.wikipedia.org/wiki/Elastic-rebound_theory.
[30] https://en.wikipedia.org/wiki/Seismic_wave.
[31] https://en.wikipedia.org/wiki/Snell's_law.
[32] Jeng, H. R., and Pan, C., “Multiple Steady-State Solutions for a Two-phase Natural Circulation Loop with Subcooled Boiling,” The 4th International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety, Taipei, Taiwan, 1994.