簡易檢索 / 詳目顯示

研究生: 吳秉蓁
論文名稱: 進步型沸水式反應器主冷卻水迴路之水化學模擬分析
The Simulation and Analysis of Water Chemistry in Primary Coolant Circuit of Advanced Boiling Water Reactor
指導教授: 葉宗洸
口試委員: 溫冬珍
葉宗洸
許榮鈞
王美雅
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 進步型沸水式反應器加氫水化學水的輻射分解沿晶應力腐蝕龜裂
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今核能反應器內部大小組件大多使用304和316不鏽鋼為材料,而這些材料常見的腐蝕現象主要是沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC)與輻射促進應力腐蝕龜裂(Irradiation-Assisted Stress Corrosion Cracking, IASCC),已被證實和沸水式反應器(Boiling Water Reactor, BWR)內部管件系統和壓力槽內部主件損壞有關,對電廠運轉安全造成嚴重威脅,而決定損壞發展情況最重要的參數是電化學腐蝕電位(Electrochemical Corrosion Potential, ECP)。近年來,全世界核能電廠逐漸廣泛利用加氫水化學(Hydrogen Water Chemistry, HWC)技術,透過飼水注氫以降低水中溶氧濃度,進而使沸水式反應器電廠主冷卻水迴路中各組件的電化學腐蝕電位降低至-0.23VSHE以下,期望達到抑制腐蝕保護主件之目的。
    不論是何種世代的反應器,確保運轉的安全是首要任務,其中,使主冷卻水迴路中的冷卻水化學環境達到最佳化是非常重要的。然而,因為反應器壓力槽內部的高輻射劑量和結構設計造成實際量測所有區域的腐蝕電位十分困難而不可行,故採取電腦程式模擬計算腐蝕電位ECP被認為是相對理想可行的辦法。

    進步型沸水式反應器(Advanced Boiling Water Reactor, ABWR)是屬於第三代(Generation III)型式的核反應器,為傳統BWR改良簡化而來,主要不同之處在於以爐內泵(Reactor Internal Pump, RIP)取代舊有BWR的再循環水泵,此改變是否影響HWC對於ABWR的有效性或是和對BWR的影響有無不同之處是值得探討關心的議題。本研究針對第三代進步型反應器,以ABWR(位於台灣北部之核四龍門電廠)為模擬對象,利用由原始DEMACE電腦程式修正而來的DEMACE_ABWR程式,配合電廠本身各組件物理尺寸資料、主冷卻水之輻射分解、熱流分析結果和中子物理計算輻射劑量等輸入結果,模擬計算並分析其在一般水化學(Normal Water Chemistry, NWC)和加氫水化學的飼水注氫量涵蓋0.1~2ppm範圍之下,主冷卻水迴路中的水化學概況和重要組件材料所處環境的電化學腐蝕電位。
    數值模擬分析結果顯示,在NWC下ABWR和傳統BWR一樣都有因為水的輻射分解造成冷卻水含氧量過高的問題,尤其是中子及加馬射線劑量率極高的爐心燃料匣區,其ECP值大約為0.25V;但在實施HWC飼水注氫量約0.4 ppm後,主冷卻水迴路( Primary Coolant Circuit, PCC )幾個重要位置的冷卻水溶氧濃度都明顯下降,尤其是RPV Bottom Drain 效益最好,此外,RIP亦受到HWC的保護作用,ECP都在-0.23V以下,由此可見HWC確實對PCC中的各個組件發揮了抑制腐蝕的功效,可確保未來核四龍門電廠的運轉安全。


    目錄 摘要 i 誌謝 iv 圖目錄 vii 表目錄 viii 第一章 緒論 1 第二章 文獻回顧 4 2.1 應力腐蝕龜裂 4 2.1.1 核能發電廠的沿晶應力腐蝕龜裂IGSCC 4 2.1.2 抑制IGSCC的防蝕技術 6 2.1.3 BWR爐心區域的IASCC 9 2.2 加氫水化學 10 2.2.1 背景和歷史 10 2.2.2 HWC下的各個電廠特性 11 2.2.3 HWC對爐心內部組件之有效性 12 2.3 BWR水化學的輻射分解模擬 13 2.3.1 理論基礎 13 2.3.2 歷史 16 2.3.3 目前的輻射分解模式 17 2.4 電化學腐蝕電位 18 第三章 基本原理 19 3.1水的輻射分解 19 3.1.1輻射分解產率 20 3.1.2 化學反應 21 3.1.3 對流 24 3.1.4 雙向流內的氣體交換 24 3.1.5 總結和化學成分濃度的一般解 25 3.2 ABWR主冷卻水迴路中的熱傳 30 3.3 中子及加馬輻射劑量率分布 32 3.4 混合電位模擬 32 第四章 數值模擬 37 4.1 模擬架構 37 4.2 中子物理與熱流輸入參數 41 4.3 模擬準確度 45 第五章 數值模擬結果 49 5.1 NWC主冷卻水迴路氧化還原劑濃度的分布和ECP 50 5.1.1 冷卻水中的氧濃度 51 5.1.2 冷卻水中的過氧化氫濃度 52 5.1.3 冷卻水中的氫濃度 54 5.1.4 冷卻水中三個主要氧化還原成分濃度比較 55 5.1.5 冷卻水中的ECP變化 57 5.2 實施HWC不同注氫量下沿ABWR主冷卻水迴路之氧化還原劑濃度和ECP的變化 58 5.2.1 冷卻水中的氧濃度 58 5.2.2 冷卻水中的過氧化氫濃度 60 5.2.3 冷卻水中的氫濃度 62 5.2.4 冷卻水中的ECP 64 5.3 實施HWC後各重要位置的氧、氫濃度和ECP 66 5.3.1 各重要位置的有效氧濃度 66 5.3.2 各重要位置的氫濃度 70 5.3.3 各重要位置的ECP 74 第六章 結論 78 第七章 未來工作 81 參考文獻 82

    [1] S. Murai, K. Kinoshita, et al., ”Hydrogen Water Chemistry Test in
    ABWR,”7th International Conference on Nuclear Engineering, Tokyo,
    Japan, April 19-23, 1999.
    [2] T. K. Yeh and M. Y. Wang, “The Impact of Power Coastdown
    Operations on the Water Chemistry and Corrosion in Boiling Water
    Reactors,” Nuclear Science and Engineering, Vol. 165, p. 210-223
    (2010).
    [3] M. Y. W ang T. K. Yeh, F. Chu, and C. Chang, “Predicted Impact of
    Core Flow Rate on the Corrosion Mitigation Effectiveness of
    Hydrogen Water Chemistry for Kuosheng Boiling Water
    Reactor,” Nuclear Engineering and Design, Vol. 239, p. 781-789 (2009).
    [4] T. K. Yeh and M. Y. Wang, “The Impact of Core Flow Rate on the
    Hydrogen Water Chemistry Efficiency in Boiling Water
    Reactors,” Nuclear Science and Engineering, Vol. 161, p. 235-244
    (2009).
    [5] M. Y. Wang, T. K. Yeh, and F. Chu, “Predicted Impact of Power Uprate on the Water Chemistry of Kuosheng Boiling Water Reactor,” Nuclear
    Engineering and Design, Vol. 238, p. 2746-2753(2008).
    [6] M. Y. Wang and T. K. Yeh, “The Impact of Power Uprate on the Water
    Chemistry in the Primary Coolant Circuit of a Boiling Water Reactor
    under a Fixed Core Flow Rate,” Journal of Nuclear Science and
    Technology, Vol. 45, p. 802-811 (2008).
    [7] T. K. Yeh and M. Y. Wang, “The Impact of Power Uprate on the Corrosion Mitigation Effectiveness of Hydrogen Water Chemistry in Boiling Water Reactors,” Nuclear Science and Engineering, Vol.160, p. 98-107 (2008).
    [8] N. Ichikawa, et al., “Precise Evaluation of Corrosion Environments of
    Structural Materials under Complex Water Flow Condition (I),” Journal of Nuclear Science and Technology, Vol. 40, p. 583(2003).
    [9] N. Ichikawa, et al., “Precise Evaluation of Corrosion Environments of
    Structural Materials under Complex Water Flow Condition(II),” Journal of Nuclear Science and Technology, Vol. 40, p. 941(2003).
    [10] I. Balachov, et al., “Prediction of Materials Damage History From Stress
    Corrosion Cracking in boiling Water Reactors,” Journal of Pressure
    Vessel Technology, Vol. 122, p. 45(2000).
    [11] D. D. Macdonald, et al., “Electrochemistry of Water-Cooled Nuclear Reactors P,” Nuclear Energy Education Research Final Technical Progress Report, (2006).
    [12] C. F. Chen, Journal of Nuclear Materials, Vol. 56, p. 11 (1975)
    [13] R. W. Weeks, “Stress Corrosion Cracking in BWR and PWR Piping,” Proc. Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Myrtle Beach, South Carolina, Aug. 22-25, 1983,p. 69.
    [14] C. Auerbach, et al., Pipe Crack Evaluation in Operating Boiling Water Reactors, NUREG/CR-4545, March 1986.
    [15] J. C. Danko, “Recent Observations of Cracks in Large Diameter Piping,” Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Myrtle Beach, South Carolina, Aug. 22-25, 1983,p. 209.
    [16] H. Flache and R. Ettemyer, American Nuclear Society Transactions, Vol. 35, p. 487 (1980).
    [17] W. J. Shack, et al., Environmentally Assisted Cracking in Light Water Reactors: Semiannual Report April-September 1986, NUREG/CR-4667 Vol. 3, September 1987.
    [18]R. L. Jones, “Prevention of Stress Corrotion Cracking in Boiling Water Reactors.” Corrotion 90, NACE, Paper Number 483 (1990).
    [19] N. Jayaraman, “An Overview of the use of Engineered Compressive Residual Stresses to Mitigate SCC and Corrosion Fatigue”, Proceedings of 2005 Tri-Service Corrosion Conference, Orlando, FL, Nov. 14-18, 2005
    [20] M. E. Indig and J. E Weber, Corrosion, Vol. 41, No. 1, p. 19 (1985).
    [21] W. R. Kassen and D. Cubicciotti, “Proposed Guidelines for Inplementing ECP Measurements in Boiling Water Reactors,” Corrosion 90, Paper No. 485.
    [22] D. D. Macdonald, Corrosion, Vol. 48, No. 3, p. 194 (1992.)
    [23] B. Rosborg and A. Molander, “The Corrosion Potential of Type 304 Stainless Steel in Swedish LWRs During Steady Reactor Operation,” Proc. 2nd Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Monterey,CA., Sep. 9-12, 1985,p. 419.
    [24] P. L. Andresen and M. E. Indig, Corrosion, Vol. 38, No. 10, p.531 (1982.)
    [25] L. G. Ljungberg, et al., Corrosion, Vol. 44, No. 2, p. 66 (1987).
    [26] W. J. Shack, et al., Environmentally Assisted Cracking in Light Water Reactors: Annual Report Oct. 1981- Sep. 1982, NUREG/CR-3292 (1983).
    [27] C. S. Tedmon, Journal of Electrochemical Society, Vol. 119 p. 120 (1971).
    [28] B. M. Gordon and G. M. Gordon, “Nuclear Engineering and Design”, Vol. 98, p. 109 (1987).
    [29] W. Bilanin, er al., Hydrogen Water Chemistry for BWRs, EPRI NP-4592-SR, Special Report, Electric Power Research Institute, June 1986.
    [30] A. J. Jacobs and G. P. Wozadlo, Proc. of Int. Conference on Nuclear Power Plant Aging Availability Factor and Reliability Analysis ,Metals Park, OH, ASM, 1985, p. 173.
    [31] R. Katsura, et al., Corrosion, Vol. 48, No. 5, p. 384 (1992).
    [32] C. W. Jewett and A. E. Pivkett, Transactions of ASME, Vol. 108, p. 10 (1986).
    [33] J. N. Kass and R. L. Cowan, “Hydrogen Water Chemistry Technology for BWRs,” Proc. 2nd. International
    [34] L. G. Ljungberg, Hydrogen Water Chemistry to Mitigate Intergranular Stress Corrosion Cracking: In-Reactor Tests, EPRI NP-5800M, Electric Power Research Institute, May 1988.
    [35] E. Ibe, et al., Journal of Nuclear Science and Technology, Vol. 23, No. 1, p. 11 (1986).
    [36] J. Takagi and K. Ishigure, Nuclear Science and Engineering, Vol. 89, p. 177 (1985).
    [37] M. J. Fox, A Review of Boiling Water Reactor Chemistry, NUREG/CR-5115, ANL-88-42, Feb. 1989.
    [38] M. W. Golay, Technology Review, May-June 1990, p. 25.
    [39] W. R. Gray, Nuclear Plant Journal, September-October 1992, p. 52.
    [40] C. P. Ruiz, et al., Modeling Hydrogen Water Chemistry for BWR Applications, EPRI NP-6386, Electric Power Research Institute, June1989.
    [41] K. Ishigure, et al., Radiat. Phys. Chem., Vol. 29, No. 3, p. 195 (1987).
    [42] S. R. Lukac, Radiat. Phys. Chem., Vol. 33, No. 3, p. 223 (1989).
    [43] J. Chun, Modeling of BWR Water Chemistry, Master Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, 1990.
    [44] M. L. Lukashenko, et al., Atomnaya Energiy, Vol. 72, No. 6, p. 570 (1992).
    [45] J. A. LaVerne and S. M. Pimblott, J. Phys. Chem., Vol. 97, p. 3291 (1993).
    [46] IAEA, Corrosion of Zirconium Alloys in Nuclear Power Plants, IAEA-TECDOC-684, International Atomic Energy Agency, Jan. 1993, p. 82.
    [47] P. Cohen, Water coolant Technology of Power Reactors, Gordon & Breach, New York, 1969.
    [48] W. G. Burns and P. B. Moore, Radiation Effects, Vol. 30, p. 233 (1976). [49] W. G. Burns and W. R. Marsh, Journal of Chem. Soc. Faraday Trans., p.
    77 (1981).
    [50] M. E. Indig and J. L. Nelson, Corrosion, Vo. 47, p. 202 (1991).
    [51] D. D. Macdonald, ”Calculation of Corrosion Potentials in Boiling Water Reactors,” Corrosion, Vol. 48, No. 3, p. 194 (1992.)
    [52] L. Niedrach and W. H. Stoddard, Corrosion, Vo. 42 p. 696 (1986).
    [53] M. Ullberg, “On Corrosion Potential Measurements in BWRs,” Proc. 4th. International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE, Jekyll Island, GA., August, 1988.
    [54] A. J. Elliot, “Rate Constants and G-Values for the Simulation of the Radiolysis of Light Water over the Range 0-300℃”, Atomic Energy of Canada Limited, AECL-11073 (1994).
    [55] C.C. Lin, et al., Int. J. Chem. Kinet., Vol. 23, p. 971 (1991).
    [56] “TRAC-BD1/MOD1: An Advanced Best Estimate Computer Program for Boiling Water Reactor Transient Analysis,” Vol. 1, TRAC-BD1/MOD1 User’s Manuals.
    [57] J. A. Blakeslee, ZEBRA- A Computer Code for the Steady –State Thermal Analysis of Light Water Cooled Nuclear Power Reactor, Master Paper, Department of Nuclear Engineering, The Pennsylvania State University, 1974.
    [58] J. H. Rust, Nuclear Power Plant Engineering, S. W. Holland Company, Atlanta, GA., 1979.
    [59] X-5 Monte Carlo Team, “MCNP --- A General Monte Carlo N-Particle Transport Code, Version 5,”(2003)
    [60] D. D. Macdonald, P. C. Lu, M. Urquidi-Macdonald, and T. K. Yeh, “Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in BWR Coolant Environments ,” Corrosion, Vol. 52, p. 768 (1996.)
    [61] C. C. Lin, Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct. 11-16, 1998, p. 211.
    [62] S. E. Garcia, “Advances in BWR Water Chemistry,” Nuclear Plant Chemistry Conference, Paris, Sep. 24-28, 2012
    [63] Y. J. Kim and and Lorraine Falter Francis, Journal of the American Ceramic Society, Vol. 76, No. 3, p. 737-742 (1993).
    [64] 林金足,龍門電廠RETRAN系統最佳估算模式建立計算書,行政院原子能委員會核能研究所,台灣,中華民國一百年三月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE