簡易檢索 / 詳目顯示

研究生: 蔣欣達
Chiang, Hsin Ta
論文名稱: Italicization and Rotation Operations of Chinese Bitmapped Font Characters
中文點陣字旋轉與斜體演算法
指導教授: 潘雙洪
Poon, Sheung Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 56
中文關鍵詞: 斜體旋轉點陣字
外文關鍵詞: Italicization, Rotation, Bitmapped Font
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Most character style softwares rotate, scale and italicize by outlining fonts or replacement. We
    are going to find out an algorithm to rotate, scale and italicize on small 3C products (small screen
    and limited storage space) has nice performance. It is less than ideal on the small character with
    outline fonts, broken, deformation and some other problems appears. With replacement method,
    we have to storage lots of characters in storage space in advance, it will wastes too much storage
    space. We can overcome these problems with gray-scale pixel, for example the BitFonter 3.
    BitFonter 3 is a professional bitmap font editor for Mac OS X and Windows. It allows creative
    professionals, web designers and manufacturers of electronic devices to create and modify bitmap
    fonts for print publications, web pages, animations, computer games and electronic devices, convert
    between bitmap font formats as well as from and to outline font formats, and apply special effects
    to your outline fonts when used together with TypeTool, FontLab Studio or AsiaFont Studio. Our
    goal is use black pixel only and focus on bitmapped font, computing the position of pixels with
    real-time computation to overcome the drawback of outline fonts and replacement on small electric
    products.
    On the other hand, for distinguishing pixels in bitmap font into several strokes so the rotate
    algorithm can apply to each of them, how to reach the goal through outline font information is
    another problem.


    摘要
    視覺是我們最重要的感官之一,如果沒有健康的視覺僅管外面有繽紛的世界
    也是枉然;同樣的效能再高的電腦如果沒有對等的顯示器搭配電腦的螢幕輸出將
    大打折扣。逛一趟電腦賣場挑選電腦螢幕,顯示器的最高解析度是螢幕等級的指
    標之一。若一款螢幕標示最高解析度為 1280*1024,代表此時有 1280*1024 個
    pixels 佈滿螢幕負責顯示功能,圖型、文字、影片等等都是藉由一點一點小小
    的pixel 所構成,解析度越高可以表現越精緻的畫質或越細小的字體。
    字體方面主要又分為兩種:描邊字(outline fonts)與點陣字(bitmapped font)。
    點陣字是將每個pixel分為著色或不著色,優點製作簡單但缺點是佔用較大的儲存空間、
    且放大時容易出現鋸齒狀失真的問題、需準備不同大小的字。一個大小為 12 * 12 bit
    的儲存空間,如果放大兩倍則需 24 * 24 bit 的儲存空間。儲存空間與放大倍數成平
    方關係;另外無法輕易改變pixel 的排列位置,因此字體的縮放、旋轉、變形等也較難
    執行。描邊字則是利用點來標示出筆劃的位置後再以函式描出筆劃,只要調整這些點的
    位置即可作到縮放、旋轉、變形等動作。向量字的優點是縮放不會有失真的問題,而且
    每個字只需儲存function 和一些點座標,佔用的儲存空間也筆點陣字小很多;缺點是
    顯示小字時會出現粗細不均或模糊的現象,為了解決此問題可以加入小的點陣字來替
    換。
    字體顏色表現方面也分為若干種,我們所研究的範圍與灰階(gray-scale)與黑白
    (binary)相關, 以灰階表示時每個pixel 可以有兩個以上的bit 表示不同的灰階程度,
    譬如兩個bit 可以表示黑、白與兩種灰色。黑白的表示每個pixel 僅有一個bit 用來表
    示顏色,黑或白是他的唯二兩種選擇。
    Monotone 表示一個字體它的筆畫寬度都是由"單一pixel"所構成,也就是說只考
    慮一個筆畫的前提下不會出現筆畫寬度大於一個pixel 的情形發生,在較大的字體就比
    較不會是monotone。因為我們的研究將環境設定在小字體上,故僅考慮monotone。
    現行字體轉換方式都是利用替代的方式,譬如12 號正體字改為斜體字是
    將對應的斜體字替換掉正體字、12 號的字體改由18 號字體替代造成放大效
    果。替代方式具備速度快和簡便的優點,若每個字需要32byte 的儲存空間以
    中文字數千字而言需要大量硬碟儲存空間存放字型!如果想要在小型電腦或
    嵌入式系統中以此方法更換字體勢必有儲存空間上的限制。圖(一)為使用現
    行字型軟體BitFonter 做字體旋轉的結果,其為real time rotate
    後結果。圈選處為斷裂且通常結果可進行改善。這次計畫主要目的是即時改
    變bitmap 字體的pixel 位置達到文字旋轉的目標,而非使用已經旋轉好的字
    型來替代,並且僅使用黑色pixel 不使用灰階pixel 來修飾。可運用在儲存
    空間或顯示器較小的商業產品, 譬如手機, GPS 等。

    Contents 1 Introduction 1 1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Preliminaries and Algorithm Overview 6 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Rotate matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Bi-level image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Dijkastra algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Algorithm overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Break Into Strokes 9 3.1 Overview of BIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Measure the Length in Pixel Square . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2.1 Measure length in pixel square crossing by straight line . . . . . . . . . . . . 12 3.2.2 Measure length in pixel square crossing by curve . . . . . . . . . . . . . . . . 13 3.3 Pick Up Opportune Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Record Connected Information of Each End Pixel . . . . . . . . . . . . . . . . . . . 15 3.4.1 Record the connected information with the stroke it belongs . . . . . . . . . 15 3.4.2 Record the connected information with all strokes adjacent . . . . . . . . . . 16 3.5 Find two End Pixels each Stroke in Target Graph . . . . . . . . . . . . . . . . . . . 16 3.5.1 Find a pixel with degree 1 and with the same feature in concerned area . . . 16 3.5.2 Find a pixel with degree 1 and with similar feature in concerned area . . . . 17 3.5.3 Find a pixel with degree larger than 1 and with the same feature in concerned area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5.4 Find a pixel with degree larger than 1 and with similar feature in concerned area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5.5 Find a pixel in concerned are which connected form is similar to the Br . . . 19 3.5.6 One of the end pixel is not found . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Record Connected Path of two End Pixels . . . . . . . . . . . . . . . . . . . . . . . 20 4 Italicization or Rotation Algorithm 22 4.1 IR overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Read Binary Data File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Translate the Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4 Italicize or rotate Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 i 4.4.1 italicization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.2 rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5 Construct the Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.6 Remove Pixel in Right Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Implementation and Experimentation 30 5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 5.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.1 Time Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2.2 Stroke Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2.4 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.5 Stroke Broken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.2.6 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2.7 Example on Some Good Outputs . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6 Deficiencies of our Algorithms 43 6.1 Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 6.2 Pick Up Wrong Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6.3 Missing Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.4 Detect Part of Stroke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.5 Complicated Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7 Conclusions 51 ii

    Bibliography
    [1] A. Namane, M.A. Sid-Ahmed. Character Scaling by Contour Method. Journal Title: IEEE
    Transactions on Pattern Analysis and Machine Intelligence. Date: 1990. Volume: 12. Issue: 6.
    p. 600 – 606.
    [2] B. B. Chaudhuri’ and U. Garain. Automatic Detection of Italic, Bold and All-Capital Words
    in Document Images. Pattern Recognition, 1998. Proceedings. Fourteenth International Conference
    on Publication Date: 16-20 Aug 1998. Volume: 1, On page(s): 610-612 vol.1. Meeting
    Date: 08/16/1998 - 08/20/1998.
    [3] B. L. Johnson, M.Sc. A Model for Automatic Optical Scaling of Type Designs for Conventional
    and Digital Technology. Thesis, School of Printing, Rochester Institute of Technology,
    Rochester, NY, 1988.
    [4] C. F. R. Weiman. Continuous anti-aliased rotation and zoom of raster images. In J. J. Thomas,
    editor, SIGGRAPH’80 Conference Proceedings, pages 286-293. Association for Computing Machinery,
    1980.
    [5] Charles B. Owen and Fillia Makedon . High Quality Alias Free Image Rotation . Signals,
    Systems and Computers, 1996. 1996 Conference Record of the Thirtieth Asilomar Conference
    on Volume 1, Issue , 3-6 Nov 1996 Page(s):115 - 119 vol.1.
    [6] Chen Xuede, Lu Siwei, Yuan Xiaobu, Chen Ling and Zeng Beikai. Midpoint Line Algorithm for
    High-speed High-accuracy Rotation of Images. Systems, Man, and Cybernetics, 1996., IEEE
    52
    International Conference on Publication Date: 14-17 Oct 1996 Volume: 4, On page(s): 2739-
    2744 vol.4 Meeting Date: 10/14/1996 - 10/17/1996 Location: Beijing, China.
    [7] Christophe Choisy, Hubert Cecotti, and Abdel Belaid. Character Rotation Absorption Using
    a Dynamic Neural Network Topology: Comparison With Invariant Features. 4th International
    Workshop on Enterprise Information Systems - PRIS 2004. April 13-14, 2004 - Porto, Portugal.
    [8] David Andrews, et al. A Parallel Architecture for Performing Real Time Multi-Line Optical
    Character Recognition. Proceedinga of The Twenty-fifth Sourheaatern Sympoxium on Syatem
    Theory, Los Alamitos, CA: IEEE Computer Society Press, 1993, pp533-536.
    [9] David L. Andrews, Randy Brown, Charles Caldwell and Andrew Wheeler. REAL TIME CHARACTER
    SCALING AND ROTATION. ACM SIGAPP Applied Computing Review Volume 3
    , Issue 1 (Summer 1995) Special issue on security Pages: 19 - 22 Year of Publication: 1995
    ISSN:1559-6915.
    [10] E.V.R. Di Bella, X.B. Barela. R.L. Eisner. and R.W. Schafer. Comparison of Rotation-based
    Methods for Iterative. Nuclear Science, IEEE Transactions. Volume: 43. Issue: 6 Part=2, Dec
    1996. Page(s): 3370-3376.
    [11] E.V.R. Di Bella, X.B.Barela, R.L.Eisner. and R.W. Schafer. Rotation-based Methods for Iterative
    Reconstruction Algorithms. Nuclear Science Symposium and Medical Imaging Conference
    Record, 1995., 1995 IEEE. Volume: 2 21-28 Oct 1995. Page(s): 1146-1150 vol.2.
    [12] H.A. Hou. Cubic spline for image interpolation and digital filtering. IEEE Trans. Acoust.,
    Speech, Signal Processing, vol. ASSP26, no. 6, pp. 508-517, Dec. 1978.
    [13] Hang Yu, Vu-Thanh Nguyen and Ee-Chien Chang. ROTATION OF FOVEATED IMAGE IN
    THE WAVELET DOMAIN. Image Processing, 2004. ICIP ’04. 2004 International Conference
    on Publication Date: 24-27 Oct. 2004.
    53
    [14] His - Jian Lee* and Jen - Tsan Huang. Performance Improvement Techniques for Chinese
    Character Recognition. Document Analysis and Recognition, 2005. Proceedings. Eighth International
    Conference on Publication Date: 29 Aug.-1 Sept. 2005. On page(s): 710- 714 Vol.
    2.
    [15] Jack Koplowitz. Contour Reconstruction for Scaling of Digital Binary Images. Images IEEE
    International Workshop on Soft Computing in Industrial Applications Binghamton University,
    Bingharnton, New York, Page(s): 127- 131, June 23-25,2003.
    [16] J. Andre and I. Vatton, Dynamic Optical Scaling and Variable Sized Characters, Electronic
    PublishingXOrigination, Dissemination, and Design, 7 (4), 231V250 (1994).
    [17] Jacques Andrew and Ire’ne Vatton. Contextual Typesetting of Mathematical Symbols Taking
    Care of Optical Scaling.
    [18] Joseph J.K. O Ruanaidh and Thiery Pun. Rotation, Scale and Translation Invariant Digital
    Image Watermarking. Image Processing, 1997. Proceedings. International Conference on
    Volume 1, 26-29 Oct. 1997 Page(s):536 - 539 vol.1.
    [19] Kaushik Mahata and A.G. Ramakrishnan. A NOVEL SCHEME FOR IMAGE ROTATION
    FOR DOCUMENT PROCESSING. Image Processing, 2000. Proceedings. 2000 International
    Conference on Volume 2, Issue , p594 - 596 vol.2, 2000.
    [20] Lee, H. J., C. H. Tung, and C. H. Chang Chien. A Markov language model in Chinese character
    recognition. Proc, ICDAR-93, Tsukuba, Japan, 72-75, 1993.
    [21] Michael Unser, Philippe Thevenaz, and Leonid Yaroslavsky. Convolution-based interpolation
    for fast, high-quality rotation of images. Volume 4, Issue 10, Oct 1995 Page(s):1371 - 1381
    Digital Object Identifier 10.1109/83.465102.
    54
    [22] Nawwaf N. Kharma, Rabab K. Ward. A novel invariant mapping applied to hand-written
    arabic character recognition. Journal Title: Pattern Recognition Date: 2001. Volume: 34.
    Issue: 11. p. 2115 - 2120.
    [23] OIVIND DUE TRIER, ANIL K. JAIN and TORFINN TAXT. FEATURE EXTRACTION
    METHODS FOR CHARACTER RECOGNITION–A SURVEY. In International Conference
    on Computer Processing of Oriental Languages.
    [24] Paul W. Palumbo, et el. Postal Address Block Location in Real Time. IEEE Computer, Vol.
    25 No 7, 1992, pp 34-42.
    [25] Qiang Wu, Xiangjian He, Tom Hintz. Image Rotation without scaling on Spiral Architecture.
    The 10-th International Conference in Central Europe on Computer Graphics, Visualization
    and Computer Vision’2002, WSCG 2002, University of West Bohemia, Campus Bory, Plzen-
    Bory, Czech Republic, February 4-8, p 515-520 , 2002.
    [26] R. A. Ulichney and D. E. Troxel, ”Scaling of binary images with telescoping template,” IEEE
    Trans. Pattern Anal. Machine Intell. vol. PAMI-4, no. 3, pp. 331-335, 1982.
    [27] Shin’ichiro Omachi, Masaki Inoue, and Hirotomo Aso. Structure Extraction from Various
    Kinds of Decorated Characters Using Multi-Scale Images. Pattern Recognition, 2000. Proceedings.
    15th International Conference. On page(s): 455-458 vol.4. Meeting Date: 09/03/2000 -
    09/07/2000. Location: Barcelona, Spain.
    [28] Tanaka, M. Ishino, Y. Shimada, H. Inoue, T. Dynamical ScalingG In On-line Hand-written
    Characters’ Matching. Neural Information Processing, 2002. ICONIP ’02. Proceedings of the
    9th International Conference on Publication Date: 18-22 Nov. 2002 Volume: 5, On page(s):
    2449- 2453 vol.5.
    [29] Tetsuo Asano, Shinnya Bitou, Mitsuo Motoki, and Nobuaki Usui. In-Place Algorithm for
    Image Rotation. ISAAC 2007, LNCS 4835, p704 - 715, 2007.
    55
    [30] Y. Lu. Machine Printed Character Segmentation-An Overview. Pattern Recognition, Vol. 28,
    January 1995.
    [31] Yun Li, Satoshi Naoi, Mohamed Cheriet, Ching Y and Suen. A Segmentation Method for
    Touching Italic Characters. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
    International Conference on Publication Date: 23-26 Aug. 2004. Volume: 2, On page(s): 594-
    597 Vol.2.
    [32] Y. Zhu, T.N. Tan, Y.H.Wang. Font Recognition Based on Global Texture Analysis. Document
    Analysis and Recognition, 1999. ICDAR ’99. Proceedings of the Fifth International Conference
    on Publication Date: 20-22 Sep 1999 On page(s): 349-352.
    [33] Maher Ahmed and Rabab Ward, Fellow, IEEE. A Rotation Invariant Rule-Based Thinning
    Algorithm for Character Recognition. IEEE transactions on pattern analysis and machine intelligence,
    VOL. 24, NO. 12, DECEMBER 2002.
    [34] Hwang Lain-Jinn, Chow Louis R, Tan Chia-Ton. Fast Bitmap Images Resizing.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE