研究生: |
呂雨庭 Lu, Yu-Ting |
---|---|
論文名稱: |
探討成纖維細胞生長因子-2促進細胞生長之最佳形式以及不同添加劑對其蛋白穩定性之影響 Investigation of the effects of different forms of fibroblast growth factor 2 on cell growth and various excipients on the protein stability |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
張壯榮
Chang, Chuang-Rung 張晉源 Chang, Chin-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 成纖維細胞生長因子-2 、蛋白質療法 、DNA 療法 、mRNA 療法 、藥物賦形劑 |
外文關鍵詞: | Fibroblast growth factor-2 (FGF-2), Protein therapy, DNA therapy, mRNA therapy, Pharmaceutical excipients |
相關次數: | 點閱:24 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成纖維細胞生長因子2 (Fibroblast Growth Factor 2, FGF-2)參與許多重要的生物過程,如胚胎發育、細胞增生以及血管新生等。許多研究指出FGF-2可以有效的促進成纖維細胞的增生以及遷移,並幫助傷口的癒合。然而其極度不穩定的特性,使其在製成醫藥產品時極具挑戰。本研究的目的旨在於找出FGF-2作為藥物之最佳給藥方式,並嘗試增加FGF-2蛋白的穩定性。本研究首先利用大腸桿菌重組蛋白的表達系統產生大量FGF-2並建立純化方式,然後將純化的FGF-2蛋白利用小鼠胚胎成纖維細胞BALB/3T3進行測試。結果表明,重組FGF-2蛋白可以促進BALB/3T3細胞的增生以及遷移,確認自行純化之FGF-2具有生物活性。然而蛋白藥物的製備複雜且耗時,因此我們嘗試使用暫時轉染FGF-2 cDNA以及mRNA的方式,以確認其效果是否優於直接使用蛋白。首先建構兩種不同5′UTR的FGF-2表達質體,分別帶有pEGFP-C1的5′UTR以及具有高核醣體結合的5′UTR,並將之轉染至BALB/3T3細胞。細胞增生率的結果顯示出含有pEGFP-C1的5′UTR的FGF-2可以顯著促進BALB/3T3細胞的增生,但是以西方點墨法分析兩種不同 5′UTR的FGF-2轉染至HEK293T細胞中皆無法明顯增加FGF-2蛋白在HEK293T細胞中的表達量。利用實驗室自行生產的T7 RNA聚合酶以及大腸桿菌多聚腺苷酸聚合酶,成功的在試管中生產出FGF-2 mRNA,也利用商業套組在其上加上5′端帽。但是所建構的FGF-2 mRNA並無法促進BALB/3T3細胞的增生。以上結果顯示出FGF-2暫時轉染的效果不佳,推測可能是由於FGF-2蛋白本身的不穩定性造成。因此我們測試多種可能增加FGF-2蛋白在37℃下穩定性的成分,結果顯示胎牛血清、Triton X-100、胰化蛋白腖、聚磷酸鈉以及羧甲基纖維素可以明顯的增加FGF-2蛋白的穩定性。其中羧甲基纖維素可以促使FGF-2蛋白形成二聚體,並且更加有效的促進BALB/3T3細胞的增生。本研究結果證明了在單純促使細胞生長上,使用FGF-2蛋白質比用cDNA與mRNA的形式要好,並且羧甲基纖維素在FGF-2蛋白藥物傳輸上具有很好之潛力。
Fibroblast growth factor 2 (FGF-2) is a multifunctional growth factor involved in many biological processes, such as embryogenesis, cell proliferation, and angiogenesis. Many studies indicated that FGF-2 could effectively promote fibroblast proliferation and migration than help wound healing. However, FGF-2 is unstable both in vivo and in vitro. This study aims to identify the best FGF-2 form to promote cell proliferation and compounds that can increase the FGF-2 protein stability. This study established an Escherichia coli expression system and a purification scheme to produce FGF-2 recombinant protein. The purified FGF-2 protein was tested on mouse BALB/3T3 fibroblasts, and the results showed that FGF-2 could promote the proliferation and migration of the cells, indicating that the self-established FGF-2 protein has biological activity. This study also tested if transient FGF-2 cDNA and mRNA transfection into the cells could be more effective than the protein treatment. Using FGF-2 plasmids with either the 5′UTR of pEGFP-C1 or the 5′UTR of high-ribosome loading synthetic sequences to transfect BALB/3T3 cells has shown that the FGF-2 encoding plasmid has 5′UTR of pEGFP-C1 can significantly promote the proliferation of mouse fibroblasts. On the other hand, Western blot analysis demonstrated that transfection of FGF-2 plasmids with either 5'UTRs into HEK293T cells could not significantly increase FGF-2 protein synthesis. The in vitro FGF-2 mRNA was synthesized using T7 RNA polymerase and poly(A) polymerase generated in our laboratory and a commercial mRNA capping system. Nevertheless, the FGF-2 mRNA could not promote BALB/3T3 cell proliferation, presumably due to the instability of the FGF-2 protein. This study then tested several compounds for their ability to improve the stability of FGF-2 protein at 37°C. It was noted that the stability of FGF-2 protein could be significantly enhanced in the presence of fetal bovine serum, tryptone, Triton X-100, sodium polyphosphate, or carboxymethyl cellulose. Adding carboxymethyl cellulose can promote the dimerization of FGF-2 protein and the proliferation of BALB/3T3 cells more effectively. In conclusion, this study demonstrated that FGF-2 protein is more effective than FGF-2 cDNA and mRNA in promoting fibroblast proliferation, and carboxymethyl has the potential to be used as a pharmaceutical excipient for FGF-2 protein delivery.
1.Du, C., et al., FGF2/FGFR signaling promotes cumulus–oocyte complex maturation in vitro. Reproduction, 2021. 161(2): p. 205-214.
2.Coleman, A.B., et al., Chemosensitization by fibroblast growth factor-2 is not dependent upon proliferation, S-phase accumulation, or p53 status. Biochemical Pharmacology, 2002. 64(7): p. 1111-1123.
3.Bikfalvi, A., et al., Biological Roles of Fibroblast Growth Factor-2*. Endocrine Reviews, 1997. 18(1): p. 26-45.
4.Kanazawa, S., et al., bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing. PLoS One, 2010. 5(8): p. e12228.
5.Laddha, A.P. and Y.A. Kulkarni, VEGF and FGF-2: Promising targets for the treatment of respiratory disorders. Respiratory Medicine, 2019. 156: p. 33-46.
6.Zehe, C., et al., Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(42): p. 15479-84.
7.Kostas, M., et al., Translocation of Exogenous FGF1 and FGF2 Protects the Cell against Apoptosis Independently of Receptor Activation. Journal of Molecular Biology, 2018. 430(21): p. 4087-4101.
8.Akl, M.R., et al., Molecular and clinical significance of fibroblast growth factor 2 (FGF2/bFGF) in malignancies of solid and hematological cancers for personalized therapies. Oncotarget, 2016. 7(28): p. 44735-44762.
9.La Venuta, G., et al., The Startling Properties of Fibroblast Growth Factor 2: How to Exit Mammalian Cells without a Signal Peptide at Hand. Journal of Biological Chemistry, 2015. 290(45): p. 27015-27020.
10.Koledova, Z., et al., Fibroblast Growth Factor 2 Protein Stability Provides Decreased Dependence on Heparin for Induction of FGFR Signaling and Alters ERK Signaling Dynamics. Frontiers in Cell and Developmental Biology, 2019. 7: p. 331.
11.Benington, L., et al., Fibroblast Growth Factor 2-A Review of Stabilisation Approaches for Clinical Applications. Pharmaceutics, 2020. 12(6).
12.Sauer, D.G., et al., A two-step process for capture and purification of human basic fibroblast growth factor from E. coli homogenate: Yield versus endotoxin clearance. Protein Expression and Purification, 2019. 153: p. 70-82.
13.Sauer, D.G., et al., Separation of truncated basic fibroblast growth factor from the full-length protein by hydrophobic interaction chromatography. Separation and Purification Technology, 2021. 254: p. 117564.
14.Yoon, J.-Y., et al., Ultrahigh protein adsorption capacity and sustained release of nanocomposite scaffolds: implication for growth factor delivery systems. RSC Advances, 2017. 7(27): p. 16453-16459.
15.Goto, R., M. Nakahata, and S. Sakai, Phenol-Grafted Alginate Sulfate Hydrogel as an Injectable FGF-2 Carrier. Gels, 2022. 8(12).
16.Vaishya, R., et al., Long-term delivery of protein therapeutics. Expert Opinion on Drug Delivery, 2015. 12(3): p. 415-40.
17.Lieser, R.M., et al., Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjugate Chemistry, 2020. 31(10): p. 2272-2282.
18.Castañeda Ruiz, A.J., et al., Alternative Excipients for Protein Stabilization in Protein Therapeutics: Overcoming the Limitations of Polysorbates. Pharmaceutics, 2022. 14(12).
19.Leader, B., Q.J. Baca, and D.E. Golan, Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug Discovery, 2008. 7(1): p. 21-39.
20.Gandhi, R.P., et al., A systematic review of therapeutic proteins as a promising approach to treat various diseases. GSC Biological and Pharmaceutical Sciences, 2023. 22(1): p. 157-169.
21.Dingman, R. and S.V. Balu-Iyer, Immunogenicity of Protein Pharmaceuticals. Journal of Pharmaceutical Sciences, 2019. 108(5): p. 1637-1654.
22.Murray, J.E., N. Laurieri, and R. Delgoda, Chapter 24 - Proteins, in Pharmacognosy, S. Badal and R. Delgoda, Editors. 2017, Academic Press: Boston. p. 477-494.
23.Wang, W., Advanced protein formulations. Protein Science, 2015. 24(7): p. 1031-9.
24.Dobrovolskaia, M.A. and M. Bathe, Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021. 13(1): p. e1657.
25.Ibraheem, D., A. Elaissari, and H. Fessi, Gene therapy and DNA delivery systems. International Journal of Pharmaceutics, 2014. 459(1): p. 70-83.
26.Saraswat, P., et al., DNA as therapeutics; an update. Indian Journal of Pharmaceutical Sciences, 2009. 71(5): p. 488-98.
27.Qureischi, M., et al., Chapter One - mRNA-based therapies: Preclinical and clinical applications, in International Review of Cell and Molecular Biology, F. Aranda, P. Berraondo, and L. Galluzzi, Editors. 2022, Academic Press. p. 1-54.
28.Sahin, U., K. Karikó, and Ö. Türeci, mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 2014. 13(10): p. 759-780.
29.Deng, Z., et al., mRNA Vaccines: The Dawn of a New Era of Cancer Immunotherapy. Frontiers in Immunology, 2022. 13: p. 887125.
30.Hou, X., et al., Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021. 6(12): p. 1078-1094.
31.Vlatkovic, I., Non-Immunotherapy Application of LNP-mRNA: Maximizing Efficacy and Safety. Biomedicines, 2021. 9(5).
32.Zhang, C., et al., Ranking mAb-excipient interactions in biologics formulations by NMR spectroscopy and computational approaches. MAbs, 2023. 15(1): p. 2212416.
33.Patel, R., J. Barker, and A. ElShaer, Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. International Journal of Molecular Sciences, 2020. 21(21).
34.Benington, L.R., et al., Stabilisation of Recombinant Human Basic Fibroblast Growth Factor (FGF-2) against Stressors Encountered in Medicinal Product Processing and Evaluation. Pharmaceutics, 2021. 13(11).
35.Kamerzell, T.J., et al., Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development. Advanced Drug Delivery Reviews, 2011. 63(13): p. 1118-1159.
36.Zhang, H., et al., Polysorbates versus Hydroxypropyl Beta-Cyclodextrin (HPβCD): Comparative Study on Excipient Stability and Stabilization Benefits on Monoclonal Antibodies. Molecules, 2022. 27(19).
37.Stolzke, T., et al., Hydroxylpropyl-β-cyclodextrin as Potential Excipient to Prevent Stress-Induced Aggregation in Liquid Protein Formulations. Molecules, 2022. 27(16).
38.Song, Y.H., et al., Distribution of fibroblast growth factors and their roles in skin fibroblast cell migration. Molecular Medicine Reports, 2016. 14(4): p. 3336-3342.
39.Linares-Fernández, S., et al., Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Molecular Therapy Nucleic Acids, 2021. 26: p. 945-956.
40.Schlessinger, J., et al., Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Molecular Cell, 2000. 6(3): p. 743-50.
41.Soleyman, M.R., et al., High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization. Iranian Red Crescent Medical Journal, 2016. 18(2): p. e21615.
42.Booth, W.T., et al., Impact of an N-terminal Polyhistidine Tag on Protein Thermal Stability. ACS Omega, 2018. 3(1): p. 760-768.
43.Pardi, N., et al., In vitro transcription of long RNA containing modified nucleosides. Methods in Molecular Biology, 2013. 969: p. 29-42.
44.Ohtake, S., Y. Kita, and T. Arakawa, Interactions of formulation excipients with proteins in solution and in the dried state. Advanced Drug Delivery Reviews, 2011. 63(13): p. 1053-1073.
45.Hunter, A.K., et al., Identification of compendial nonionic detergents for the replacement of Triton X-100 in bioprocessing. Biotechnology Progress, 2022. 38(2): p. e3235.
46.Rose, K., Interaction of ATP with fibroblast growth factor 2: biochemical characterization and consequence for growth factor stability. BMC Biochemistry, 2011. 12: p. 14.
47.Oćwieja, M. and A. Barbasz, Sodium hexametaphosphate–induced enhancement of silver nanoparticle toxicity towards leukemia cells. Journal of Nanoparticle Research, 2020. 22(6): p. 167.
48.Rahman, M.S., et al., Recent Developments of Carboxymethyl Cellulose. Polymers, 2021. 13(8): p. 1345.
49.Chen, Y.M., et al., Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. European Polymer Journal, 2017. 94: p. 501-510.
50.Tang, L., et al., Study on synergistic effects of carboxymethyl cellulose and LIPUS for bone tissue engineering. Carbohydrate Polymers, 2022. 286: p. 119278.
51.Nawrocka, D., et al., Stable Fibroblast Growth Factor 2 Dimers with High Pro-Survival and Mitogenic Potential. International Journal of Molecular Sciences, 2020. 21(11).