研究生: |
黃靖婷 Huang, Ching-Ting |
---|---|
論文名稱: |
以Subspace LDA方法解決人臉辨識小樣本問題之探討 A Study on the Subspace LDA Methods for Solving the Small Sample Size Problem in Face Recognition |
指導教授: |
陳朝欽
Chen, Chaur-Chin |
口試委員: |
黃仲陵
Huang, Chung-Lin 張隆紋 Chang, Long-Wen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 人臉辨識 、小樣本問題 、線性判別分析 |
外文關鍵詞: | Face Recognition, Small Sample Size Problem, Linear Discriminant Analysis |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在人臉辨識中,線性判別分析法(Linear Discriminant Analysis,簡稱 LDA)經常遇到所謂的「小樣本」問題,也被稱為「維度災難」。當資料維度比訓練影像的數量大許多時,便會出現此問題。其中一種處理這種情況的方法是子空間線性判別分析法(Subspace LDA),它包含兩個主要的步驟:首先使用主成分分析法(Principal Component Analysis,簡稱 PCA) 的概念降低維度,然後使用線性判別分析法的概念加以分類。在這篇論文中,我們探討四種子空間線性判別分析法: 「Fisherface」,「Complete PCA plus LDA」,「IDAface」和「BDPCA plus LDA」,並比較它們在處理人臉辨識小樣本問題的有效性。我們以三個公開的人臉資料庫,分別是:JAFFE、ORL及FEI,來作實驗。實驗結果顯示,對於處理人臉辨識小樣本問題,「BDPCA plus LDA」方法在這些子空間線性判別分析法中有最佳的表現。
In face recognition, LDA often encounters the so-called “small sample size” (SSS) problem, also known as “curse of dimensionality”. This problem occurs when the dimensionality of the data is quite large in comparison to the number of available training images. One of the approaches for handling this situation is the subspace LDA. It is a two-stage framework: it first uses PCA-based method for dimensionality reduction, and then LDA-based method is applied for classification. In this thesis, we investigate four popular subspace LDA methods: “Fisherface”, “complete PCA plus LDA”, “IDAface” and “BDPCA plus LDA” and compare their effectiveness when handling the SSS problem in face recognition. Extensive experiments have been performed on three publically available face databases: the JAFFE, ORL and FEI databases. Experimental results show that among the subspace LDA methods under investigation, the performance of the BDPCA plus LDA method is the best for solving the SSS problem in face recognition.
[Belh1997] P.N. Belhumeur, J.P. Hespanha, and D. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 711-720, 1997.
[Chen2000] L.F. Chen, H.Y.M. Liao, M.T. Ko, J.C. Lin, and G.J. Yu, “A New LDA-Based Face Recognition System which can Solve the Small Sample Size Problem,” Pattern Recognition, vol. 33, no. 10, pp. 1713-1726, 2000.
[Fish1936] R.A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of Eugenics, vol. 7, no. 2, pp. 179-188, 1936.
[Fuku1990] K. Fukunaga, "Introduction to Statistical Pattern Recognition," New York: Academic, 1990.
[Kirb1990] M. Kirby, and L. Sirovich, “Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103-108, 1990.
[Li2011] S.Z. Li, and A.K. Jain, “Handbook of face recognition,” Springer, 2011.
[Lyon1998] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets,” The third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200-205, 1998.
[Mart2001] A.M. Martínez, and A.C. Kak, “PCA Versus LDA,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, pp. 228-233, 2001.
[Sama1992] A. Samal, and P.A. Iyengar, “Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey,” Pattern Recognition, vol. 25, no. 1, pp. 65-77, 1992.
[Sama1994] F.S. Samaria, and A.C. Harter, “Parameterisation of a Stochastic Model for Human Face Identification,” The Second IEEE Workshop on Applications of Computer Vision, pp. 138-142, 1994.
[Siro1987] L. Sirovich, and M. Kirby, “Low-Dimensional Procedure for the Characterization of Human Faces,” The Journal of the Optical Society of America A, vol. 4, no. 3, pp. 519-524, 1987.
[Turk1991] M. Turk, and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
[Yang2003] J. Yang, and J.Y. Yang, “Why Can LDA Be Performed in PCA Transformed Space?,” Pattern Recognition, vol. 36, no. 2, pp. 563-566, 2003.
[Yang2004] J. Yang, D. Zhang, A.F. Frangi, and J.Y. Yang, “Two-dimensional PCA: a New Approach to Appearance-based Face Representation and Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 1, pp. 131-137, 2004.
[Yu2001] H. Yu, and J. Yang, “A Direct LDA Algorithm for High-dimensional Data - with Application to Face Recognition,” Pattern Recognition, vol. 34, pp. 2067-2070, 2001.
[Zhao2003] W. Zhao, R. Chellappa, P.J. Phillips, and A. Rosenfeld, “Face Recognition: A Literature Survey,” ACM Computing Surveys, vol. 35, no. 4, pp. 399-458, 2003.
[Zhua2007] X.S. Zhuang, and D.Q. Dai, “Improved Discriminate Analysis for High-dimensional Data and Its Application to Face Recognition,” Pattern Recognition, vol. 40, no. 5, pp. 1570-1578, 2007.
[Zuo2006] W. Zuo, D. Zhang, J. Yang, and K. Wang, “BDPCA Plus LDA: A Novel Fast Feature Extraction Technique for Face Recognition,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 4, pp. 946-953, 2006.
[Web01] http://www.kasrl.org/jaffe.html last accessed on Jan. 14, 2014
[Web02] http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html last accessed on Jan. 14, 2014
[Web03] http://fei.edu.br/~cet/facedatabase.html last accessed on Jan. 14, 2014