簡易檢索 / 詳目顯示

研究生: 李承翰
Lee, Cheng-Han
論文名稱: 以高分子強化微米級矽基負極之機械性質與導電性於鋰離子電池之應用
Polymeric Approach for High Performance Micrometer-sized Silicon Anode in Li-ion Batteries with Enhanced Mechanical Properties and Conductivity
指導教授: 杜正恭
Duh, Jenq-Gong
林姿瑩
Lin, Tzu-Ying
口試委員: 洪崧富
Hung, Sung-Fu
林玠廷
Lin, Chieh-Ting
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 94
中文關鍵詞: 矽基負極廢料矽永續材料
外文關鍵詞: silicon anode, Kerf-loss waste, sustainable materials
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 黏結劑為傳統電池溼式製程中黏合電極重要的一員,因為矽與水有相當好之親合力,水溶性黏結劑─聚丙烯酸(PAA)─能與矽表面產生更好的交互作用。本研究使用具高度彈性的聚合物─poly-pseudorotaxane(p-PR)─應用於調整PAA之機械性質。經修飾的黏結劑複合材料,以多種成分詳細地研究其作用與效應,p-PR與PAA間鍵結可經真空中脫水反應強化結構混定性。10% p-PR的成分可達到最佳循環效率,在250 mA g-1之充放電速率下展現出2770 mAh g-1之初始電容量,且於100圈後還維持80%的效率,其原因為電極整體產生之龜裂最少。於阻抗分析中,10%樣品於循環後展現最穩定之SEI與較低之阻抗值。經p-PR修飾之矽碳混和電極能產生710 mAh g-1之初始電容量,且以250 mA g-1之速率充放下經300圈能達到70%之循環效率。


    Binder is essential in conventional wet processes of battery manufacturing for electrode adhesion. Since silicon shows great affinity with water, water-soluble binders, e.g., polyacrylic acid (PAA), is preferable to silicon surface forming stronger interaction. In this study, a highly elastic polymer, poly-pseudorotaxane (p-PR), is applied to adjust the mechanical properties of stiff PAA binder. The modified binder composites with several compositions are thoroughly investigated to analyze the interactions and effects. The bonding between p-PR and PAA by dehydration reaction in a vacuum ensures structural stability. The integrity of the electrode with 10% p-RR demonstrates the best retention due to less crack formation. The initial capacity of 10% p-PR sample acquires 2770 mAh g-1, retaining 80% after 100 cycles at a rate of 250 mA g-1. In impedance analysis, 10% p-PR also reveals the most stable solid‐electrolyte interphase (SEI) after cycling together with a decreased resistance. In addition, the p-PR modified graphite/Si composite electrode delivers an initial capacity of 710 mAh g-1 at a rate of 250 mA g-1 and a substantial cyclability of 70% retention after 300 cycles.

    Content Abstract...........................................................ii Content............................................................iv Figure Lists.......................................................vii Table List.........................................................x Chapter 1 Introduction.............................................1 1.1 Background.....................................................1 1.2 Motivations and Objectives in This Study.......................2 Chapter 2 Literature Review........................................5 2.1 Introduction of Lithium Ion Battery............................5 2.2 Development of Silicon Anode...................................20 2.2.1 Overview of Silicon-based Anode..............................20 2.2.2 Critical Issues of Silicon Materials.........................22 2.2.3 Innovations of Silicon Anode Design..........................25 2.3 Introduction of Binder and Polymer in Silicon Anode............33 2.3.1 Binder Development in Si Anode...............................33 2.3.2 Advanced Binder Design and Polymeric Technique...............38 Chapter 3 Experimental Procedure...................................47 3.1 Materials Prepearation.........................................47 3.1.1 Synthesis of Poly-pseudorotaxane.............................47 3.1.2 Silicon Powder Preparation from Waste Sludge.................47 3.1.3 Electrode and Coin Cell Battery Preparation..................48 3.2 Characterization and Analysis..................................49 3.2.1 Size Analysis................................................49 3.2.2 Chemical Analysis............................................50 3.2.3 SEM and EPMA Observation.....................................50 3.3 Electrochemical Analysis.......................................51 3.3.1 Cycling and Charging-rate Test...............................51 3.3.2 Cyclic Voltammetry...........................................51 3.3.3 Electrochemical Impedance Spectroscopy.......................51 3.4 Mechanical Test of Electrode...................................52 3.4.1 Tape Peeling Test............................................52 3.4.2 Nano-indentation.............................................52 Chapter 4 The Investigation of p-PR on Conventional Binder (PAA)...54 4.1 The Size Distribution of Milled Si Waste.......................54 4.2 FTIR Analysis..................................................56 4.3 Electrochemical Analysis of Si-based Electrodes................58 4.4 Investigations of Si-based Electrodes..........................69 4.4.1 Tape Peeling Test............................................69 4.4.2 Nano-indentation.............................................70 4.4.3 Morphologies.................................................72 4.5 Performance of Si/graphite-mixed Electrode.....................74 Chapter 5 Conclusion...............................................76 Appendix...........................................................79 A.1 The Enhanced Performance with Conductive Polymer as Binder.....79 A.2 The Mechanical Stabilization Effect of p-PR on PEDOT: PSS Electrodes.........................................................80 References.........................................................83

    1. Li H, Wang Z, Chen L, Huang X. Research on Advanced Materials for Li-ion Batteries. Advanced Materials. 2009;21(45):4593-607.
    2. Kwon T-w, Choi JW, Coskun A. The emerging era of supramolecular polymeric binders in silicon anodes. Chemical Society Reviews. 2018;47(6):2145-64.
    3. Ge M, Cao C, Biesold GM, Sewell CD, Hao S-M, Huang J, et al. Recent Advances in Silicon-Based Electrodes: From Fundamental Research toward Practical Applications. Advanced Materials. 2021;33(16):2004577.
    4. Li M, Lu J, Chen Z, Amine K. 30 Years of Lithium-Ion Batteries. Advanced Materials. 2018;30(33):1800561.
    5. Whittingham MS. Lithium Batteries and Cathode Materials. Chemical Reviews. 2004;104(10):4271-302.
    6. Godshall NA, Raistrick ID, Huggins RA. Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials. Materials Research Bulletin. 1980;15(5):561-70.
    7. Besenhard JO, Fritz HP. Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1974;53(2):329-33.
    8. Abe T, Kawabata N, Mizutani Y, Inaba M, Ogumi Z. Correlation Between Cointercalation of Solvents and Electrochemical Intercalation of Lithium into Graphite in Propylene Carbonate Solution. Journal of The Electrochemical Society. 2003;150(3):A257.
    9. Nishi Y. The development of lithium ion secondary batteries. The Chemical Record. 2001;1(5):406-13.
    10. Nishi Y. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources. 2001;100(1):101-6.
    11. Zheng T, Xing W, Dahn JR. Carbons prepared from coals for anodes of lithium-ion cells. Carbon. 1996;34(12):1501-7.
    12. Fong R, von Sacken U, Dahn JR. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of The Electrochemical Society. 1990;137(7):2009.
    13. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta. 2002;47(9):1423-39.
    14. Michan AL, Parimalam BS, Leskes M, Kerber RN, Yoon T, Grey CP, et al. Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials. 2016;28(22):8149-59.
    15. Peled E, Golodnitsky D, Ardel G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society. 1997;144(8):L208.
    16. Goodenough JB. Evolution of Strategies for Modern Rechargeable Batteries. Accounts of Chemical Research. 2013;46(5):1053-61.
    17. Zhang W-J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources. 2011;196(1):13-24.
    18. Peled E, Menkin S. Review—SEI: Past, Present and Future. Journal of The Electrochemical Society. 2017;164(7):A1703-A19.
    19. Heiskanen SK, Kim J, Lucht BL. Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. Joule. 2019;3(10):2322-33.
    20. Goodenough JB, Kim Y. Challenges for Rechargeable Li Batteries. Chemistry of Materials. 2010;22(3):587-603.
    21. Aravindan V, Lee Y-S, Madhavi S. Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes. Advanced Energy Materials. 2015;5(13):1402225.
    22. Malini R, Uma U, Sheela T, Ganesan M, Renganathan NG. Conversion reactions: a new pathway to realise energy in lithium-ion battery—review. Ionics. 2009;15(3):301-7.
    23. Cao K, Jin T, Yang L, Jiao L. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Materials Chemistry Frontiers. 2017;1(11):2213-42.
    24. Wu F, Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy & Environmental Science. 2017;10(2):435-59.
    25. Collins GA, McNamara K, Kilian S, Geaney H, Ryan KM. Alloying Germanium Nanowire Anodes Dramatically Outperform Graphite Anodes in Full-Cell Chemistries over a Wide Temperature Range. ACS Applied Energy Materials. 2021;4(2):1793-804.
    26. Obrovac MN, Chevrier VL. Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews. 2014;114(23):11444-502.
    27. Rehnlund D, Lindgren F, Böhme S, Nordh T, Zou Y, Pettersson J, et al. Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries. Energy & Environmental Science. 2017;10(6):1350-7.
    28. Nitta N, Wu F, Lee JT, Yushin G. Li-ion battery materials: present and future. Materials Today. 2015;18(5):252-64.
    29. Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta. 2010;55(22):6332-41.
    30. Lee P-K, Li Y, Yu DYW. Insights from Studying the Origins of Reversible and Irreversible Capacities on Silicon Electrodes. Journal of The Electrochemical Society. 2016;164(1):A6206-A12.
    31. Zuo X, Zhu J, Müller-Buschbaum P, Cheng Y-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy. 2017;31:113-43.
    32. Limthongkul P, Jang Y-I, Dudney NJ, Chiang Y-M. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia. 2003;51(4):1103-13.
    33. Chae S, Ko M, Kim K, Ahn K, Cho J. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule. 2017;1(1):47-60.
    34. Wilson AM, Way BM, Dahn JR, Buuren Tv. Nanodispersed silicon in pregraphitic carbons. Journal of Applied Physics. 1995;77(6):2363-9.
    35. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano. 2012;6(2):1522-31.
    36. Young BT, Heskett DR, Nguyen CC, Nie M, Woicik JC, Lucht BL. Hard X-ray Photoelectron Spectroscopy (HAXPES) Investigation of the Silicon Solid Electrolyte Interphase (SEI) in Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2015;7(36):20004-11.
    37. Chan CK, Ruffo R, Hong SS, Cui Y. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources. 2009;189(2):1132-40.
    38. Wagner NP, Tron A, Tolchard JR, Noia G, Bellmann MP. Silicon anodes for lithium-ion batteries produced from recovered kerf powders. Journal of Power Sources. 2019;414:486-94.
    39. Ma Q, Qu J, Chen X, Zhao Z, Zhao Y, Zhao H, et al. Converting micro-sized kerf-loss silicon waste to high-performance hollow-structured silicon/carbon composite anodes for lithium-ion batteries. Sustainable Energy & Fuels. 2020;4(9):4780-8.
    40. Zhang L, Zhang L, Zhang J, Hao W, Zheng H. Robust polymeric coating enables the stable operation of silicon micro-plate anodes recovered from photovoltaic industry waste for high-performance Li-ion batteries. Journal of Materials Chemistry A. 2015;3(30):15432-43.
    41. Bao W, Fang C, Cheng D, Zhang Y, Lu B, Tan DHS, et al. Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography. Cell Reports Physical Science. 2021;2(10):100597.
    42. Rodrigues M-TF, Trask SE, Shkrob IA, Abraham DP. Quantifying gas generation from slurries used in fabrication of Si-containing electrodes for lithium-ion cells. Journal of Power Sources. 2018;395:289-94.
    43. Li F, Xu J, Hou Z, Li M, Yang R. Silicon Anodes for High-Performance Storage Devices: Structural Design, Material Compounding, Advances in Electrolytes and Binders. ChemNanoMat. 2020;6(5):720-38.
    44. Li P, Zhao G, Zheng X, Xu X, Yao C, Sun W, et al. Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials. 2018;15:422-46.
    45. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology. 2008;3(1):31-5.
    46. Huang S, Cheong L-Z, Wang D, Shen C. Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2017;9(28):23672-8.
    47. Hsieh C-C, Liu W-R. Effects of nitrogen doping on Si/carbon composite anode derived from Si wastes as potential active materials for Li ion batteries. Journal of Alloys and Compounds. 2019;790:829-36.
    48. Zhang ZY, Li ZW, Luo Q, Yang BZ, Liu Y, Hu YY, et al. Spontaneous nanominiaturization of silicon microparticles with structural stability as flexible anodes for lithium ion batteries. Carbon. 2022;188:238-45.
    49. Han X, Chen H, Zhang Z, Huang D, Xu J, Li C, et al. Carbon-coated Si micrometer particles binding to reduced graphene oxide for a stable high-capacity lithium-ion battery anode. Journal of Materials Chemistry A. 2016;4(45):17757-63.
    50. Zhao Z, Cai X, Yu X, Wang H, Li Q, Fang Y. Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes. Sustainable Energy & Fuels. 2019;3(5):1258-68.
    51. Gao X, Wang F, Gollon S, Yuan C. Micro Silicon–Graphene–Carbon Nanotube Anode for Full Cell Lithium-ion Battery. Journal of Electrochemical Energy Conversion and Storage. 2018;16(1).
    52. Shen B, Zeng J, Fu N, Wang X, Yang Z. High reversible capacity silicon anode by segregated graphene-carbon nanotube networks for lithium ion half/full batteries. Journal of Energy Storage. 2022;55:105767.
    53. Fang C, Liu J, Zhang X, Luo W, Zhang G, Li X, et al. In Situ Formed Weave Cage-Like Nanostructure Wrapped Mesoporous Micron Silicon Anode for Enhanced Stable Lithium-Ion Battery. ACS Applied Materials & Interfaces. 2021;13(25):29726-36.
    54. Ren Y, Yin X, Xiao R, Mu T, Huo H, Zuo P, et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries. Chemical Engineering Journal. 2022;431:133982.
    55. Luo W, Wang Y, Wang L, Jiang W, Chou S-L, Dou SX, et al. Silicon/Mesoporous Carbon/Crystalline TiO2 Nanoparticles for Highly Stable Lithium Storage. ACS Nano. 2016;10(11):10524-32.
    56. Yang J, Wang Y-X, Chou S-L, Zhang R, Xu Y, Fan J, et al. Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries. Nano Energy. 2015;18:133-42.
    57. Chen M, Jing Q-S, Sun H-B, Xu J-Q, Yuan Z-Y, Ren J-T, et al. Engineering the Core–Shell-Structured NCNTs-Ni2Si@Porous Si Composite with Robust Ni–Si Interfacial Bonding for High-Performance Li-Ion Batteries. Langmuir. 2019;35(19):6321-32.
    58. Luo W, Chen X, Xia Y, Chen M, Wang L, Wang Q, et al. Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Advanced Energy Materials. 2017;7(24):1701083.
    59. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, et al. A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science. 2011;334(6052):75.
    60. Hwang C, Joo S, Kang N-R, Lee U, Kim T-H, Jeon Y, et al. Breathing silicon anodes for durable high-power operations. Scientific Reports. 2015;5(1):14433.
    61. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, et al. Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid. ACS Applied Materials & Interfaces. 2010;2(11):3004-10.
    62. Li Z, Zhang Y, Liu T, Gao X, Li S, Ling M, et al. Silicon Anode with High Initial Coulombic Efficiency by Modulated Trifunctional Binder for High-Areal-Capacity Lithium-Ion Batteries. Advanced Energy Materials. 2020;10(20):1903110.
    63. Lee SH, Lee JH, Nam DH, Cho M, Kim J, Chanthad C, et al. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery. ACS Applied Materials & Interfaces. 2018;10(19):16449-57.
    64. Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D Network Binder for High-Areal-Capacity Si Anode through Combined Hard and Soft Polymers. Advanced Energy Materials. 2019;9(3):1802645.
    65. Ye Q, Zheng P, Ao X, Yao D, Lei Z, Deng Y, et al. Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries. Electrochimica Acta. 2019;315:58-66.
    66. Chen C, Chen F, Liu L, Zhao J, Wang F. Cross-linked hyperbranched polyethylenimine as an efficient multidimensional binder for silicon anodes in lithium-ion batteries. Electrochimica Acta. 2019;326:134964.
    67. Mazouzi D, Grissa R, Paris M, Karkar Z, Huet L, Guyomard D, et al. CMC-citric acid Cu(II) cross-linked binder approach to improve the electrochemical performance of Si-based electrodes. Electrochimica Acta. 2019;304:495-504.
    68. Cho I, Gong S, Song D, Lee Y-G, Ryou M-H, Lee YM. Mussel-inspired Polydopamine-treated Copper Foil as a Current Collector for High-performance Silicon Anodes. Scientific Reports. 2016;6(1):30945.
    69. Lee S-Y, Choi Y, Hong K-S, Lee JK, Kim J-Y, Bae J-S, et al. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode. Applied Surface Science. 2018;447:442-51.
    70. Hernandez CR, Etiemble A, Douillard T, Mazouzi D, Karkar Z, Maire E, et al. A Facile and Very Effective Method to Enhance the Mechanical Strength and the Cyclability of Si-Based Electrodes for Li-Ion Batteries. Advanced Energy Materials. 2018;8(6):1701787.
    71. Koo B, Kim H, Cho Y, Lee KT, Choi N-S, Cho J. A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries. Angewandte Chemie International Edition. 2012;51(35):8762-7.
    72. Liao H, He W, Liu N, Luo D, Dou H, Zhang X. Facile In Situ Cross-Linked Robust Three-Dimensional Binder for High-Performance SiOx Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2021;13(41):49313-21.
    73. Ren W-F, Le J-B, Li J-T, Hu Y-Y, Pan S-Y, Deng L, et al. Improving the Electrochemical Property of Silicon Anodes through Hydrogen-Bonding Cross-Linked Thiourea-Based Polymeric Binders. ACS Applied Materials & Interfaces. 2021;13(1):639-49.
    74. Zheng Z, Gao H, Ke C, Li M, Cheng Y, Peng D-L, et al. Constructing Robust Cross-Linked Binder Networks for Silicon Anodes with Improved Lithium Storage Performance. ACS Applied Materials & Interfaces. 2021;13(45):53818-28.
    75. Su T-T, Ren W-F, Wang K, Yuan J-M, Shao C-Y, Ma J-L, et al. Bifunctional hydrogen-bonding cross-linked polymeric binders for silicon anodes of lithium-ion batteries. Electrochimica Acta. 2022;402:139552.
    76. Xu K, Zhuang GV, Allen JL, Lee U, Zhang SS, Ross PN, et al. Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-Ion Batteries. The Journal of Physical Chemistry B. 2006;110(15):7708-19.
    77. Browning KL, Sacci RL, Doucet M, Browning JF, Kim JR, Veith GM. The Study of the Binder Poly(acrylic acid) and Its Role in Concomitant Solid–Electrolyte Interphase Formation on Si Anodes. ACS Applied Materials & Interfaces. 2020;12(8):10018-30.
    78. Xiong J, Dupré N, Mazouzi D, Guyomard D, Roué L, Lestriez B. Influence of the Polyacrylic Acid Binder Neutralization Degree on the Initial Electrochemical Behavior of a Silicon/Graphite Electrode. ACS Applied Materials & Interfaces. 2021;13(24):28304-23.
    79. Marinaro M, Weinberger M, Wohlfahrt-Mehrens M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries. Electrochimica Acta. 2016;206:99-107.
    80. Hu B, Jiang S, Shkrob IA, Zhang J, Trask SE, Polzin BJ, et al. Understanding of pre-lithiation of poly(acrylic acid) binder: Striking the balances between the cycling performance and slurry stability for silicon-graphite composite electrodes in Li-ion batteries. Journal of Power Sources. 2019;416:125-31.
    81. Hays KA, Ruther RE, Kukay AJ, Cao P, Saito T, Wood DL, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes? Journal of Power Sources. 2018;384:136-44.
    82. Yue L, Zhang L, Zhong H. Carboxymethyl chitosan: A new water soluble binder for Si anode of Li-ion batteries. Journal of Power Sources. 2014;247:327-31.
    83. Ling M, Xu Y, Zhao H, Gu X, Qiu J, Li S, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy. 2015;12:178-85.
    84. Bresser D, Buchholz D, Moretti A, Varzi A, Passerini S. Alternative binders for sustainable electrochemical energy storage – the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science. 2018;11(11):3096-127.
    85. Yao D, Yang Y, Deng Y, Wang C. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. Journal of Power Sources. 2018;379:26-32.
    86. Gao S, Sun F, Brady A, Pan Y, Erwin A, Yang D, et al. Ultra-efficient polymer binder for silicon anode in high-capacity lithium-ion batteries. Nano Energy. 2020;73:104804.
    87. Uchida S, Mihashi M, Yamagata M, Ishikawa M. Electrochemical properties of non-nano-silicon negative electrodes prepared with a polyimide binder. Journal of Power Sources. 2015;273:118-22.
    88. Hong M, Lee S, Choi S, Mun J. Polyimide binder for a high-energy-density composite anode electrode with graphite and silicon. Journal of Electroanalytical Chemistry. 2020;871:114317.
    89. Yan X, Wang Y, Yu T, Chen H, Zhao Z, Guan S. Polyimide binder by combining with polyimide separator for enhancing the electrochemical performance of lithium ion batteries. Electrochimica Acta. 2016;216:1-7.
    90. Zhu L, Du F, Zhuang Y, Dai H, Cao H, Adkins J, et al. Effect of crosslinking binders on Li-storage behavior of silicon particles as anodes for lithium ion batteries. Journal of Electroanalytical Chemistry. 2019;845:22-30.
    91. Wei L, Hou Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. Journal of Materials Chemistry A. 2017;5(42):22156-62.
    92. Yu L, Liu J, He S, Huang C, Gan L, Gong Z, et al. A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries. Journal of Physics and Chemistry of Solids. 2019;135:109113.
    93. Liu H, Chen T, Xu Z, Liu Z, Yang J, Chen J. High-Safety and Long-Life Silicon-Based Lithium-Ion Batteries via a Multifunctional Binder. ACS Applied Materials & Interfaces. 2020;12(49):54842-50.
    94. Bie Y, Yang J, Liu X, Wang J, Nuli Y, Lu W. Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2016;8(5):2899-904.
    95. Guan X, Yong Y, Wu Q, Zhang X, Guo X, Li C, et al. Metal-Chelated Biomimetic Polyelectrolyte as a Powerful Binder for High-Performance Micron Silicon Anodes. Energy Technology. 2020;8(7):2000278.
    96. Song D, Jung D, Cho I, Ryou M-H, Lee YM. Mussel-Inspired Polydopamine-Functionalized Super-P as a Conductive Additive for High-Performance Silicon Anodes. Advanced Materials Interfaces. 2016;3(17):1600270.
    97. Liang J, Fan Z, Chen S, Zheng S, Wang Z. A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for LIBs. Journal of Alloys and Compounds. 2021;860:158433.
    98. Bie Y, Yang J, Lu W, Lei Z, Nuli Y, Wang J. A Facile 3D Binding Approach for High Si Loading Anodes. Electrochimica Acta. 2016;212:141-6.
    99. Song J, Zhou M, Yi R, Xu T, Gordin ML, Tang D, et al. Interpenetrated Gel Polymer Binder for High-Performance Silicon Anodes in Lithium-ion Batteries. Advanced Functional Materials. 2014;24(37):5904-10.
    100. Hwang C, Cho Y-G, Kang N-R, Ko Y, Lee U, Ahn D, et al. Selectively accelerated lithium ion transport to silicon anodes via an organogel binder. Journal of Power Sources. 2015;298:8-13.
    101. He J, Zhang L. Polyvinyl alcohol grafted poly (acrylic acid) as water-soluble binder with enhanced adhesion capability and electrochemical performances for Si anode. Journal of Alloys and Compounds. 2018;763:228-40.
    102. Chen R-C, Hsiao L-Y, Wu C-Y, Duh J-G. Facile synthesizing silicon waste/carbon composites via rapid thermal process for lithium-ion battery anode. Journal of Alloys and Compounds. 2019;791:19-29.
    103. Choi SJ, Yim T, Cho W, Mun J, Jo YN, Kim KJ, et al. Rosin-Embedded Poly(acrylic acid) Binder for Silicon/Graphite Negative Electrode. ACS Sustainable Chemistry & Engineering. 2016;4(12):6362-70.
    104. Tian M, Wu P. Nature Plant Polyphenol Coating Silicon Submicroparticle Conjugated with Polyacrylic Acid for Achieving a High-Performance Anode of Lithium-Ion Battery. ACS Applied Energy Materials. 2019;2(7):5066-73.
    105. Gu Y, Yang S, Zhu G, Yuan Y, Qu Q, Wang Y, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder. Electrochimica Acta. 2018;269:405-14.
    106. Jiao X, Yuan X, Yin J, Boorboor Ajdari F, Feng Y, Gao G, et al. Multiple Network Binders via Dual Cross-Linking for Silicon Anodes of Lithium-Ion Batteries. ACS Applied Energy Materials. 2021;4(9):10306-13.
    107. Yu X, Yang H, Meng H, Sun Y, Zheng J, Ma D, et al. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2015;7(29):15961-7.
    108. Zheng M, Wang C, Xu Y, Li K, Liu D. A water-soluble binary conductive binder for Si anode lithium ion battery. Electrochimica Acta. 2019;305:555-62.
    109. Hu S, Wang L, Huang T, Yu A. A conductive self-healing hydrogel binder for high-performance silicon anodes in lithium-ion batteries. Journal of Power Sources. 2020;449:227472.
    110. Zhong H, He A, Lu J, Sun M, He J, Zhang L. Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries. Journal of Power Sources. 2016;336:107-14.
    111. Zeng W, Wang L, Peng X, Liu T, Jiang Y, Qin F, et al. Enhanced Ion Conductivity in Conducting Polymer Binder for High-Performance Silicon Anodes in Advanced Lithium-Ion Batteries. Advanced Energy Materials. 2018;8(11):1702314.
    112. Li J, Zhang G, Yang Y, Yao D, Lei Z, Li S, et al. Glycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. Journal of Power Sources. 2018;406:102-9.
    113. Lü L, Lou H, Xiao Y, Zhang G, Wang C, Deng Y. Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries. RSC Advances. 2018;8(9):4604-9.
    114. Lin C-T, Huang T-Y, Huang J-J, Wu N-L, Leung M-k. Multifunctional co-poly(amic acid): A new binder for Si-based micro-composite anode of lithium-ion battery. Journal of Power Sources. 2016;330:246-52.
    115. Lee K, Kim T-H. Poly(aniline-co-anthranilic acid) as an electrically conductive and mechanically stable binder for high-performance silicon anodes. Electrochimica Acta. 2018;283:260-8.
    116. Kwon T-w, Jeong YK, Lee I, Kim T-S, Choi JW, Coskun A. Systematic Molecular-Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries. Advanced Materials. 2014;26(47):7979-85.
    117. Park S-J, Zhao H, Ai G, Wang C, Song X, Yuca N, et al. Side-Chain Conducting and Phase-Separated Polymeric Binders for High-Performance Silicon Anodes in Lithium-Ion Batteries. Journal of the American Chemical Society. 2015;137(7):2565-71.
    118. Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry. 2013;5(12):1042-8.
    119. Xu Z, Yang J, Zhang T, Nuli Y, Wang J, Hirano S-i. Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule. 2018;2(5):950-61.
    120. Jeong YK, Choi JW. Mussel-Inspired Self-Healing Metallopolymers for Silicon Nanoparticle Anodes. ACS Nano. 2019;13(7):8364-73.
    121. Liu Z, Fang C, He X, Zhao Y, Xu H, Lei J, et al. In Situ-Formed Novel Elastic Network Binder for a Silicon Anode in Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2021;13(39):46518-25.
    122. Hu Y, Shao D, Chen Y, Peng J, Dai S, Huang M, et al. A Physically Cross-Linked Hydrogen-Bonded Polymeric Composite Binder for High-Performance Silicon Anodes. ACS Applied Energy Materials. 2021;4(10):10886-95.
    123. Choi S, Kwon T-w, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017;357(6348):279.
    124. Yoo D-J, Elabd A, Choi S, Cho Y, Kim J, Lee SJ, et al. Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithium-Metal Batteries. Advanced Materials. 2019;31(29):1901645.
    125. Huang F, Gibson HW. Polypseudorotaxanes and polyrotaxanes. Progress in Polymer Science. 2005;30(10):982-1018.
    126. Wankar J, Kotla NG, Gera S, Rasala S, Pandit A, Rochev YA. Recent Advances in Host–Guest Self-Assembled Cyclodextrin Carriers: Implications for Responsive Drug Delivery and Biomedical Engineering. Advanced Functional Materials. 2020;30(44):1909049.
    127. Arunachalam M, Gibson HW. Recent developments in polypseudorotaxanes and polyrotaxanes. Progress in Polymer Science. 2014;39(6):1043-73.
    128. Li J, Loh XJ. Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews. 2008;60(9):1000-17.
    129. Chen Z, Zhang H, Dong T, Mu P, Rong X, Li Z. Uncovering the Chemistry of Cross-Linked Polymer Binders via Chemical Bonds for Silicon-Based Electrodes. ACS Applied Materials & Interfaces. 2020;12(42):47164-80.
    130. Hou S-C, Su Y-F, Chang C-C, Hu C-W, Chen T-Y, Yang S-M, et al. The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery. Journal of Power Sources. 2017;349:111-20.
    131. He D, Li P, Wang W, Wan Q, Zhang J, Xi K, et al. Collaborative Design of Hollow Nanocubes, In Situ Cross-Linked Binder, and Amorphous Void@SiOx@C as a Three-Pronged Strategy for Ultrastable Lithium Storage. Small. 2020;16(5):1905736.
    132. McNeill IC, Sadeghi SMT. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1—Poly(acrylic acid). Polymer Degradation and Stability. 1990;29(2):233-46.
    133. Jung C-H, Kim K-H, Hong S-H. Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via Esterification. ACS Applied Materials & Interfaces. 2019;11(30):26753-63.
    134. Obrovac MN, Krause LJ. Reversible Cycling of Crystalline Silicon Powder. Journal of The Electrochemical Society. 2007;154(2):A103.
    135. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science. 2011;4(9):3243-62.
    136. Paloukis F, Elmasides C, Farmakis F, Selinis P, Neophytides SG, Georgoulas N. Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries. Journal of Power Sources. 2016;331:285-92.
    137. Zhang SM, Zhang JX, Xu SJ, Yuan XJ, He BC. Li ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochimica Acta. 2013;88:287-93.
    138. Bredar ARC, Chown AL, Burton AR, Farnum BH. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials. 2020;3(1):66-98.
    139. Kim Y, Kim Y, Kim JH. Highly Conductive PEDOT:PSS Thin Films with Two-Dimensional Lamellar Stacked Multi-Layers. Nanomaterials. 2020;10(11):2211.
    140. Stamenkovic J, Premovic P, Mentus S. Electrical conductivity of poly (acrylic acid) gels. JOURNAL-SERBIAN CHEMICAL SOCIETY. 1997;62:945-50.

    QR CODE