研究生: |
陳世青 Shih-Ching Chen |
---|---|
論文名稱: |
具非揮發性記憶體與電晶體功能之新穎奈米線SONOS TFTs Novel Nanowire SONOS TFTs Functioned as Nonvolatile Memory and Transistor |
指導教授: |
連振炘
Chen-Hsin Lien 張鼎張 Chang-Ting Chang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 多晶矽薄膜電晶體 、矽氧氮氧矽 、非揮發性記憶體 、奈米線 、三向閘極 、π型閘極 |
外文關鍵詞: | Polysilicon thin-film transistors, SONOS, Nonvolatile memory, Nanowire, Tri-gate, Pi-gate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文第一部份,提出利用氧化矽-氮化矽-氧化矽(ONO)堆疊閘極介電層及多重奈米線(nanowire)結構來改善多晶矽薄膜電晶體(TFT)的特性。實驗結果指出,由於氧化矽-氮化矽-氧化矽堆疊閘極介電層相較於傳統氧化矽閘極介電層具有較高之介電常數,元件特性因此受到改善。除此之外,具有多重奈米線結構之薄膜電晶體有較佳之電性特性。由於閘極之電力線會聚集在奈米線狹窄的通道表面,且形成大的電場,所以具奈米線結構之元件會有較佳之閘極控制能力。因此,具奈米線結構之SONOS-TFT的元件特性主要的改善來自於電力線聚集所產生的高電場效應。此外,SONOS-TFT在適當的電壓操作下亦可具有非揮發性記憶體之功能。在此,所提出之奈米線SONOS-TFT因具有較好之閘極控制能力,所以有較快的寫入/抹除效率。
接下來,當氧化矽-氮化矽-氧化矽堆疊閘極介電層的膜厚比多晶矽薄膜之後度還要薄時,奈米線結構SONOS-TFT的奈米線通道會被多晶矽閘極給包覆。由實驗結果顯示,由於三向閘極及額外的轉角電流貢獻,使奈米線結構SONOS-TFT具有較佳之電性特性。由電場模擬結果驗證,奈米線結構SONOS-TFT的寫入/抹除效率之改善,主要是由於較多的轉角數目及其轉角效應所貢獻。相同地,電場的模擬結果也顯示出,在轉角區域裡,跨越穿隧氧化層之電場被增強,而跨越阻擋氧化層之電場卻是降低的。在記憶體操作時,這樣的電場分佈可以抑制寄生的閘極注入效應,使得抹除速度能明顯地改善。此外,這樣的元件也具有良好之耐操度與資料保存特性。
最後,我們利用Π型閘極結構於奈米線通道,製作出整合非揮發性矽-氧-氮-氧-矽(SONOS)之多晶矽薄膜電晶體(TFT)。此Π型閘極SONOS-TFT具有較佳之電晶體電性,如較小之啟始電壓與較陡峭之次臨界斜率。由輸出特性顯示,此元件亦具有較高之驅動電流,且可抑制扭結效應(Kink-effect)。在記憶體的應用上,在適當的電壓操作下,此元件能提供較快之寫入/抹除效率及較大之啟始電壓飄移。此Π型閘極SONOS-TFT的電性改善都是由其較大的有效通道寬度及較多之轉角數目所貢獻。
In first part, presents a method to enhance the performance of polycrystalline silicon thin film transistors (ploy-Si TFTs) by using an oxide-nitride-oxide (ONO) gate dielectric and the multiple nanowire channels structure. Experimental results indicate that the performance of the device was enhanced by using the ONO multilayer, because the ONO gate dielectric constant is increased compared to the conventional oxide gate dielectric. Additionally, the TFTs with a ten nanowire channel structure (NW-TFTs) have superior electrical characteristics than other TFTs. Since the crowding of the gate fringing field at the narrow channel surface of nanowire causes the large electrical field, the devices with nanowire structure have the better gate control ability. Hence, the device characteristics of SONOS-TFT with NW structure are mainly improved by the high electrical field originated from fringing electrical field effect. Furthermore, the SONOS-TFT also can be functioned as a nonvolatile memory under adequate bias operation. The proposed NW SONOS-TFT can exhibit high program/erase (P/E) efficiency due to the good gate control ability originated from fringing electrical field effects.
Next, as the thickness of ONO layer thinner than that of poly-Si channel, the SONOS-TFT with nanowire channels is surrounded by poly-gate. The experimental results show that the NW SONOS-TFT has the superior electrical characteristics due to the tri-gate structure and additional corner current induced by corner effect. The simulation of electrical field results verified that the enhancement of P/E efficiency in NW SONOS-TFT is mainly attributed to the large number of corners and their corner effect. Also, the simulation result on electrical field reveals that the electrical field across the tunnel oxide is enhanced and that across the blocking oxide is reduced at the corner regions. This will lead the parasitic gate injection activity and the erasing speed can be apparently improved in the memory device, due to the pronounced corner effect and narrow channel width. In addition, the good endurance and retention are also obtained in this device.
Finally, we apply the pi-gate structure on nanowire channel for polycrystalline silicon thin-film transistor (poly-SiTFT) combined with nonvolatile silicon-oxide-nitride-oxide-silicon (SONOS) memory. The proposed pi-gate TFT-SONOS has superior electrical characteristics of transistor, such as smaller threshold voltage (Vth) and steeper subthreshold slope (SS). The output characteristic also exhibits the high driving current and suppression of the kink-effect. For memory application, the device can provide high program/erase (P/E) efficiency and large threshold voltage shift under adequate bias operation. The enhanced performance for pi-gate SONOS-TFT is attributed to the larger effective channel width and number of corners.
References
Chapter 1
[1]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” IEDM Tech. Dig., 157, 1989.
[2]. M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, “Polysilicon TFT technology for active matrix OLED displays,” IEEE Trans. Electron Devices, vol. 48, pp. 845-851, 2001.
[3]. H. Kuriyama et al., “An asymmetric memory cell using a C-TFT for ULSI SRAM,” Symp. On VLSI Tech., p.38, 1992.
[4]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanala, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, Vol. 42, pp.1305-1313,1995.
[5]. K. Yoshizaki, H. Takaashi, Y. Kamigaki, T.asui, K. Komori, and H. Katto, “A 95ns 256k CMOS EPROM,” Proc. of IEEE Solid-State Circuits Conference (ISSCC), p.166, 1985
[6]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, Vol. 43, pp. 1930-1936, 1996.
[7]. T. Kaneko, U. Hosokawa, N. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT's analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, Vol. 38, pp. 1086-1093, 1991.
[8]. U. Hayashi, H. Hayashi, M. Negishi, T. Matsushita, “A Thermal Printer Head With Cmos Thin-film Transistors And Heating Elements Integrated On a Chip,” Proc. of IEEE Solid-State Circuits Conference (ISSCC), p. 266 , 1988.
[9]. N.Yamauchi, U. Inava, and M. Okamura, “An integrated photodetector- amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett, Vol. 5, pp. 319-321, 1993.
[10]. M. G. Clark, “Current status and future prospects of poly-Si devices,” IEE Proc. Circuits Devices Syst, Vol. 141, 133 , 1994.
[11]. Noriyoshi Yamauchi, Jean-Jacques J. Hajjar and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, Vol. 38, pp 55-60, 1991.
[12]. Singh Jagar, Mansun Chan, M. C. Poon, Hongmei Wang, Ming Qin, Ping K. Ko, Yangyuan Wang, “Single Grain Thin-Film-Transistor (TFT) with SOI CMOS Performance Formed by Metal-Induced-Lateral-Crystallization,” IEDM Tech. Dig., pp. 293-296, 1999.
[13]. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991.
[14]. T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[15]. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, pp. 563, 1991.
[16]. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys, Vol. 69, pp. 1703-1706, 1991
[17]. T. J. King and K. C. Saraswat, “Low-temperature fabrication of poly-Si thin-film transistors,” IEEE Electron Device Lett, Vol. 13, pp. 309-311, 1992.
[18]. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, “High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics,” IEDM Tech. Dig, Vol. 91, pp. 563, 1991.
[19]. D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
[20]. J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[21]. M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[22]. M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE circuits & devices, 16, 22 (2000).
[23]. J. S. Witters, G. Groeseneken and H. E. Maes, “Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits,” IEEE Jounal of Solid State Circuits, pp. 1372 (1989).
[24]. S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[25]. J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Lett., 18, 278 (1997).
[26]. Y. C. King, T. J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., 115 (1998).
[27]. S. Lim, S. J. Kim, J. H. Jung, B. K. Ju, M. H. Oh, and J. F. Wager, “High quality silicon-nitride thin film grown by helium plasma-enhanced chemical vapor deposition”, in Proc. Vacuum Microelectronics Conf., pp. 406-410 (1996)
[28]. T. Watanabe, A Menjoh, M. Ishikawa, and J. Kumagai, “The high-frequency analogue performance of MOSFETs”, in in IEDM Tech. Dig., pp. 173-176, 1984
[29]. C. K. Yang, C. L. Lee, and T. F. Lei, “Enhanced H2-plasma effects on polysilicon thin-film transistors with thin ONO gate-dielectric”, IEEE Electron Device Lett., vol. 16, pp. 228-229, June 1995.
[30]. Yung-Chun Wu, Ting-Chang Chang , Po-Tsun Liu, Chi-Shen Chen, Chun-Hao Tu, Hsiao-Wen Zan, Ya-Hsiang Tai, and Chun-Yen Chang, “High-Performance Polycrystalline Silicon Thin-Film Transistor with Multiple Nano-Wire Channels and Lightly-Doped Drain Structure” Appl. Phys. Lett., vol. 84, no. 19, pp. 3822-3824, 2004.
[31]. Yung-Chun Wu, Ting-Chang Chang, Po-Tsun Liu, Yuan-Chun Wu, Cheng-Wei Chou, Chun-Hao Tu, Jen-Chung Lou, Chun-Yen Chang, “Mobility Enhancement of Polysilicon Thin-Film Transistor using Nanowire Channels by Pattern-dependent Metal-Induced Lateral Crystallization” Appl. Phys. Lett., vol. 84, no. 14, pp. 143504 - 143504-3, 2004.
[32]. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFETs,” IEEE Trans. Elec. Dev., 40, pp. 2326-2329 (1993)
[33]. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully depleted CMOS transistors: Fabrication, design, and layout,” in Proc. VLSI Tech. Symp., pp. 133 (2003)
[34]. J. T. Park, and J. P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines,” IEEE Trans. Elec. Dev., 49, pp. 2222-2229 (2002)
[35]. S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T. Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAMs,” IEEE Trans. Elec. Dev., 46, pp. 1693-1698 (1999)
[36]. T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., 43, pp. 701-705, 1996
[37]. K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, 2001
[38]. H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283, 2001
[39]. K. H. Wu, H. C. Chien, C. C. Chan, T. S. Chen, and C. H. Kao, “SONOS device with tapered bandgap nitride layer,” IEEE Trans. Elec. Dev., 52, pp. 987-992, 2005
[40]. X. Wang and D. L. Kwong, “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Trans. Elec. Dev., 53, pp. 78-82, 2006
[41]. Y. H. Lin, C. H. Chien, T. H. Chou, T. S. Chao, C. Y. Chang, and T. F. Lei, “2-bit poly-Si-TFT nonvolatile memory using hafnium oxide, hafnium silicate and zirconium silicate,” in IEDM Tech. Dig., 2005
[42]. S. I Hsieh, H. T. Chen, Y. C. Chen, C. L. Chen, and Y. C. King, “MONOS memory in sequential laterally solidified low-temperature poly-Si TFTs,” IEEE Electron Device Lett., 27, pp. 272-274, 2006
[43]. A. Nakamura, H. Moriya, T. Terano, H. Kosaka, A. Hashiguchi, K. Nomoto, I. Fujiwara, T. Kobayashi and T. Oda, “Narrow distribution of threshold voltage in 4-Mbit MONOS memory-cell array with F-N channel write and direct/F-N tunneling erase operation as a single transistor structure,” IEEE Trans. Electron Dev., 51, pp.895-900 (2004)
[44]. H. T. Lue, Y. H. Shih, K. Y. Hsieh, R. Liu and C. Y. Lu, “A transient analysis method to characterize the trap vertical location in nitride-trapping devices,” IEEE Electron Device Lett., 25, pp.816-818 (2004).
[45]. V. A. Gritsenko, K. A. Nasyrov, Y. N. Novikov, A. L. Aseev, S. Y. Yoon, J. W. Lee, E. H. Lee and C. W. Kim, “A new low voltage fast SONOS memory with high-k dielectric,” Solid-State Electronics, 47, pp.1651-1656 (2003)
[46]. C. Friederich, M. Specht, T. Lutz, F. Hofmann, L. Dreeskornfeld, W. Weber, J. Kretz, T. Melde, W. Rosner, E. Landgraf, J. Hartwich, M. Stadele, L. Risch and D. Richter, “Multi-level p+ tri-gate SONOS NAND string arrays,” in IEDM Tech. Dig., 346946 (2006)
[47]. C. H. Lee, K. C. Park and K. Kim, “Charge-trapping memory cell of SiO2-SiN-high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect,” Appl. Phys. Lett., 87, 073510 (2005).
[48]. Y. C. Wu, T. C. Chang, P. T. Liu, C. S. Chen, C. H. Tu, H. S. Zan and Y. H. Tai and C. Y. Chang, “Effects of channel width on electrical characteristics of polysilicon TFTs with multiple nanowire channels,” IEEE Trans. Elec. Dev., 52, pp. 2343-2346, 2005
Chapter 2
[1]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982.
[2]. P. Migliorato, C. Reita, G. Tallatida, M. Quinn and G. Fortunato, “Anomalous off-current mechanisms in n-channel poly-Si thin film transistors,” Solid-State-Electronics, Vol.38, pp.2075-2079, 1995.
[3]. G. Baccarani, B. Ricco and G. Spadini, “Transport properties of polycrystalline silicon films,” J. Appl. Phys. Vol. 49, pp.5565-5570, 1978.
[4]. Ted Kamins, “Polycrystalline silicon for integrated circuits and displays,” second edition, pp.200-210.
[5]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982.
[6]. R. E. Proano, R. S. Misage, D. G. Ast, ”Development and Electrical Properties of Undoped Polycrystalline Silicon Thin-Film Transistors.”, IEEE Electron Device Lett. Vol. 36. No. 9. pp. 1915-1922, Sept. 1989.
[7]. K. R. Olasupo and M. K. Hatalis, “Leakage Current Mechanism in Sub-Micron Polysilicon Thin-Film Transistors,” IEEE Trans. Electron Devices, ” Vol. 43, pp.1218, 1996.
[8]. C. T. Angelis, C. A. Dimitriadis, I. Samaras, J. Brini, G. Kamarinos, V. K. Gueorguiev, and Tz. E. Ivanov, “Study of leakage current in n-channel and p-channel polycrystalline silicon thin-film transistors by conduction and low frequency noise measurements” p. 4095-4101, J. Appl. Phys. Vol. 82 , 1997.
[9]. S. M. Sze, “Semiconductor Devices Physics and Technology,” second edition, Wiley, New York, 2002.
[10]. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview,” Proceedings of IEEE, 85, 1248 (1997)
[11]. M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59.
[12]. P. E. Cottrell, R. R. Troutman, and T. H. Ning, “Hot-electron emission in n-channel IGFETs,” IEEE J. Solid-State Circuits, 14, 442 (1979)
[13]. J. Bu, M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices,” Solid-State Electronics, 45, 113 (2001)
[14]. Y. Wang and M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state” Solid-State Electron., p.97 (2005)
[15]. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proceedings of the IEEE., 91, p.489 (2003)
[16]. K. Kim and J. Choi, “Future Outlook of NAND Flash Technology for 40nm Node and Beyond,” NVSMW, p.9 (2006)
[17]. P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of flash cell in program/erase cycling,” IEDM Tech. Dig., p.291 (1994)
[18]. D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical modeling of reliability and scaling projections for flash memories,” IEDM Tech. Dig., p.32.2.1 (2001)
[19]. D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti, “New technique for fast characterization of SILC distribution in flash arrays,” Proc. IRPS, p.73 (2001)
[20]. D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in flash memories after program/erase cycling,” Proc. IRPS, p.1 (2002)
Chapter 3
[1]. H. Oshima and S. Morozumi, “Future trends for TFT integrated circuits on glass substrates,” in IEDM Tech. Dig., pp. 157-160, 1989
[2]. T. Uchida, “Present and future trend of electron device technology in flat panel display,” in IEDM Tech. Dig., pp. 5-10, 1991
[3]. A. O. Adan, K. Suzuki, H. Shibayama, and R. Miyake, “A half-micron SRAM cell using a double-gated self-aligned polysilicon PMOS thin film transistor (TFT) load”, in Symp. VLSI Technology Dig. Tech. Papers, pp. 19–20, 1990.
[4]. H. J. Cho, F. Nemati, P. B. Griffin, and J. D. Plummer, “ A novel pillar DRAM cell for 4 Git and beyond”, in Symp. VLSI Technology Dig. Tech. Papers, pp. 38-39, 1998.
[5]. S. Lim, S. J. Kim, J. H. Jung, B. K. Ju, M. H. Oh, and J. F. Wager, “High quality silicon-nitride thin film grown by helium plasma-enhanced chemical vapor deposition”, in Proc. Vacuum Microelectronics Conf., pp. 406-410, 1996
[6]. T. Watanabe, A Menjoh, M. Ishikawa, and J. Kumagai, “The high-frequency analogue performance of MOSFETs”, in in IEDM Tech. Dig., pp. 173-176, 1984
[7]. C. K. Yang, C. L. Lee, and T. F. Lei, “Enhanced H2-plasma effects on polysilicon thin-film transistors with thin ONO gate-dielectric”, IEEE Electron Device Lett., vol. 16, pp. 228-229, June 1995.
[8]. Yung-Chun Wu, Ting-Chang Chang , Po-Tsun Liu, Chi-Shen Chen, Chun-Hao Tu, Hsiao-Wen Zan, Ya-Hsiang Tai, and Chun-Yen Chang, “High-Performance Polycrystalline Silicon Thin-Film Transistor with Multiple Nano-Wire Channels and Lightly-Doped Drain Structure” Appl. Phys. Lett., vol. 84, no. 19, pp. 3822-3824, 2004.
[9]. Yung-Chun Wu, Ting-Chang Chang, Po-Tsun Liu, Yuan-Chun Wu, Cheng-Wei Chou, Chun-Hao Tu, Jen-Chung Lou, Chun-Yen Chang, “Mobility Enhancement of Polysilicon Thin-Film Transistor using Nanowire Channels by Pattern-dependent Metal-Induced Lateral Crystallization” Appl. Phys. Lett., vol. 84, no. 14, pp. 143504 - 143504-3, 2004.
[10]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys. Vol. 53, pp.1193-1202, 1982.
[11]. Y. Ma, T. Yasuda, and G. Lucovsky, “Ultrathin device quality oxide-nitride-oxide heterostructure formed by remote plasma enhanced chemical vapor deposition” Appl. Phys. Lett., vol. 64, no. 17, pp. 2226-2228, 1994,
[12]. P. Sallagoity, M. Ada-Hanifi, M. Paoli and M. Haond, “Analysis of width edge effects in advanced isolation schemes for deep submicron CMOS technologies”, IEEE Electron Devices, vol. 43, pp.1900-1906, Nov. 1996.
[13]. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios and R. Chau, “Tri-gate fully-depleted CMOS transistors: Fabricaiton, design and layout”, in Symp. VLSI Technology Dig. Tech. Papers., pp. 133-134, 2003
[14]. J. G. Fossum, J. W. Yang and V. P. Trivedi, “Suppression of corner effects in triple-gate MOSFETs”, IEEE Electron Device Lett., vol. 23, no. 12, pp. 745-747, Dec. 2003.
Chapter 4
[1]. T. Tanaka, H. Asuma, K. Ogawa, Y. Shinagawa, and N. Konishi, “An LCD addressed by a-Si:H TFTs with peripheral poly-Si TFTcircuits,” in IEDM Tech. Dig., 389 (1993)
[2]. T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT'sfor LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., 43, 701 (1996)
[3]. T. Serikawa, S. Shirai, A. Okamoto, and S. Suyama, “Low-temperature fabrication of high-mobility poly-Si TFTs forlarge-area LCDs,” IEEE Trans. Elec. Dev., 36, 1929 (1989)
[4]. A. J. Walker, S. Nallamothu, E. H. Chen, M. Mahajani, S. B. Herner, M. Clack, J. M. Cleeves, S. V. Dunton, V. L. Eckert, J. Gu, S. Hu, J. Knall, M. Konevecki, C. Petti, S. Radigan, U. Raghuram, J. Vienna, M. A. Vyvoda, “3D TFT-SONOS memory cell for ultra-high density file storage applications,” in Proc. VLSI Symp.Tech. Dig., p.29 (2003)
[5]. K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, 2001
[6]. Y. Nakajima, Y. Kida, M. Murase, Y. Toyoshima, and Y. Maki, “Latest development of system-on-glass display with low temperature poly-Si TFT,” in Proc. SID, 864 (2004)
[7]. B. Jiankang, and M. H. White, “Design consideration in scaled SONOS nonvolatile memory devices,” Solid State Electron., 45, pp. 113-120 (2001)
[8]. H. E. Maes, J. Witters, and G. Groeseneken, Proc. 17 European Solid State Devices Res. Conf. Bologna 1987, 157 (1988).
[9]. M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits Devices Mag., 16, 22 (2000).
[10]. P. Pavan, R. Bez, P. Olovo, and E. Zanoni, “Flash memory cells—an overview ,” in Proc. IEEE, 85, 1248 (1997)
[11]. S. I Hsieh, H. T. Chen, Y. C. Chen, C. L. Chen and Y. C. King, “MONOS memory in sequential laterally solidified low-temperature poly-Si TFTs,” IEEE Electron Device Lett., 27, 272 (2006).
[12]. Y. C. Wu, C. Y. Chang, T. C. Chang, P. T. Liu, C. S. Chen, C. H. Tu, H. S. Zan and Y. H. Tai and S. M. Sze, “High performance and high reliability polysilicon thin-film transistors with multiple nano-wire channels,” in IEDM Tech. Dig., 777 (2004)
[13]. Y. C. Wu, T. C. Chang, C. Y. Chang, C. S. Chen, C. H. Tu, P. T. Liu, H. S. Zan and Y. H. Tai, “High-Performance Polycrystalline Silicon Thin-Film Transistor with Multiple Nano-Wire Channels and Lightly-Doped Drain Structure,” Appl. Phys. Lett., 84, 3822 (2004).
[14]. D. K. Schroder, Semiconductor Material and Devcie Characterization, published by John Wiley & Sons (1998).
[15]. E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser and J. J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. Electron Devices, 45, 1350 (1998)
[16]. G. Fiori, G. Iannaccone, G. Molas, and B. De Salvo, “Dependence of the programming window of silicon-on-insulator nanocrystal memories on channel width,” Appl. Phys. Lett., 86, 113502 (2005).
Chapter 5
[1]. S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and three-dimensional integration of MOSFET's in small-grain LPCVD polycrystalline Silicon,” IEEE Trans. Elec. Dev., 32, pp. 258–281, 1985.
[2]. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Elec. Dev., 42, pp. 1305–1313, 1995.
[3]. N. D.Young, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French , “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Dev., Vol. 43, pp. 1930-1936, 1996.
[4]. T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., 43, pp. 701-705, 1996
[5]. K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, 2001
[6]. H. Tokioka, M. Agari, M. Inoue, T. Yamamoto, H. Murai, and H. Nagata, “Low power consumption TFT-LCD with dynamic memory embedded in pixels,” in Proc. SID, pp. 280–283, 2001
[7]. K. H. Wu, H. C. Chien, C. C. Chan, T. S. Chen, and C. H. Kao, “SONOS device with tapered bandgap nitride layer,” IEEE Trans. Elec. Dev., 52, pp. 987-992, 2005
[8]. X. Wang and D. L. Kwong, “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Trans. Elec. Dev., 53, pp. 78-82, 2006
[9]. Y. H. Lin, C. H. Chien, T. H. Chou, T. S. Chao, C. Y. Chang, and T. F. Lei, “2-bit poly-Si-TFT nonvolatile memory using hafnium oxide, hafnium silicate and zirconium silicate,” in IEDM Tech. Dig., 2005
[10]. S. I Hsieh, H. T. Chen, Y. C. Chen, C. L. Chen, and Y. C. King, “MONOS memory in sequential laterally solidified low-temperature poly-Si TFTs,” IEEE Electron Device Lett., 27, pp. 272-274, 2006
[11]. Y. C. Wu, T. C. Chang, P. T. Liu, C. S. Chen, C. H. Tu, H. S. Zan and Y. H. Tai and C. Y. Chang, “Effects of channel width on electrical characteristics of polysilicon TFTs with multiple nanowire channels,” IEEE Trans. Elec. Dev., 52, pp. 2343-2346, 2005
[12]. G. Fiori, G. Iannaccone, G. Molas and B. D. Salvo, “Three-dimensional Simulation of the dependence of the programming window of SOI nanocrystal memories on the channel width,” IEEE Trans. Nanotechnol., 4, pp. 326-330, 2005
[13]. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout,” in Proc. VLSI Tech. Symp., pp. 133-134, 2003
[14]. E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser and J. J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. Elec. Dev., 45, pp. 1350 (1998)
[15]. S. Manzini, “Electronic processes in silicon nitride,” J. Appl. Phys., vol.62, no. 8, pp. 3278-3284, 1987
[16]. Y. H. Shih, H. T. Lue, K. Y. Hsieh, R. Liu, and C. Y. Lu, “A novel 2-bit/cell nitride storage flash memory with greater than 1M P/E-cycle endurance,” in IEDM Tech. Dig., pp. 881-884, 2004
Chapter 6
[1]. K. Yoneda, R. Yokoyama, and T. Yamada, “Development trends of LTPS TFT LCDs for mobile applications,” in Proc. Symp. VLSI Circuits, pp. 85–90, 2001
[2]. T. Nishibe and H. Nakamura, “Value-added circuit and function integration for SOG (system-on glass) based on LTPS technology,” in Proc. SID, pp. 1091-1094 (2006).
[3]. Y. H. Lin, C. H. Chien, T. H. Chou, T. S. Chao, and T. F. Lei, “Low-temperature polycrystalline silicon thin-film flash memory with hafnium silicate,” IEEE Trans. Elec. Dev., 54, pp. 531-536 (2007)
[4]. A. Nakamura, H. Moriya, T. Terano, H. Kosaka, A. Hashiguchi, K. Nomoto, I. Fujiwara, T. Kobayashi and T. Oda, “Narrow distribution of threshold voltage in 4-Mbit MONOS memory-cell array with F-N channel write and direct/F-N tunneling erase operation as a single transistor structure,” IEEE Trans. Electron Dev., 51, pp.895-900 (2004)
[5]. H. T. Lue, Y. H. Shih, K. Y. Hsieh, R. Liu and C. Y. Lu, “A transient analysis method to characterize the trap vertical location in nitride-trapping devices,” IEEE Electron Device Lett., 25, pp.816-818 (2004).
[6]. X. Wang and D. L. Kwong, “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Trans. Elec. Dev., 53, pp. 78-82, 2006
[7]. V. A. Gritsenko, K. A. Nasyrov, Y. N. Novikov, A. L. Aseev, S. Y. Yoon, J. W. Lee, E. H. Lee and C. W. Kim, “A new low voltage fast SONOS memory with high-k dielectric,” Solid-State Electronics, 47, pp.1651-1656 (2003)
[8]. C. Friederich, M. Specht, T. Lutz, F. Hofmann, L. Dreeskornfeld, W. Weber, J. Kretz, T. Melde, W. Rosner, E. Landgraf, J. Hartwich, M. Stadele, L. Risch and D. Richter, “Multi-level p+ tri-gate SONOS NAND string arrays,” in IEDM Tech. Dig., 346946 (2006)
[9]. C. H. Lee, K. C. Park and K. Kim, “Charge-trapping memory cell of SiO2-SiN-high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect,” Appl. Phys. Lett., 87, 073510 (2005).
[10]. Y. Wang and M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state,” Solid-State Electrics, 49, pp. 97-107 (2005)
[11]. S. J. Wrazien, Y. Zhao, J. D. Krayer, and M. H. White, “Characterization of SONOS oxynitride nonvolatile semiconductor memory devices,” Solid-State Electrics, 47, pp. 885-891 (2003)
[12]. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout,” in Proc. VLSI Tech. Symp., pp. 133-134, 2003
Chapter 7
[1]. T. Aoyama, K. Ogawa,Y. Mochizuki, and N.Konishi, “Inverse staggered poly-Si and amorphous Si double structure TFT's for LCD panels with peripheral driver circuits integration,” IEEE Trans. Elec. Dev., 43, pp. 701 (1996)
[2]. Y. Nakajima, Y. Teranishi, Y. Kida, and Y. Maki, “Ultra-low-power LTPS TFT-LCD technology us a multi-bit pixel memory circuit,” in Proc. SID, pp. 1185–1188 (2006).
[3]. Y. Nakajima, Y. Kida, M. Murase, Y. Toshihiko, and Y. Maki, “Latest development of system-on-glass display with low temperature poly-Si TFT,” in Proc. SID, pp. 864-867 (2004).
[4]. Y. H. Lin, C. H. Chien, T. H. Chou, T. S. Chao, and T. F. Lei, “Low-temperature polycrystalline silicon thin-film flash memory with hafnium silicate,” IEEE Trans. Elec. Dev., 54, pp. 531-536 (2007)
[5]. H. T. Chen, S. I. Hsieh, C. J. Lin, and Y. C. King, “Embedded TFT NAND-type nonvolatile memory in panel,” IEEE Electron Device Lett., 28, pp. 499-501 (2007).
[6]. S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. H. Yeh, C. F. Weng, S. M. Sze, C. Y. Chang, and C. H. Lien, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels,” Appl. Phys. Lett., 90, 122111 (2007).
[7]. K. Suzuki, T. Tanaka, Y. Tosaka, H. Horie, and Y. Arimoto, “Scaling theory for double-gate SOI MOSFETs,” IEEE Trans. Elec. Dev., 40, pp. 2326-2329 (1993)
[8]. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, and R. Chau, “Tri-gate fully depleted CMOS transistors: Fabrication, design, and layout,” in Proc. VLSI Tech. Symp., pp. 133 (2003)
[9]. J. T. Park, and J. P. Colinge, “Multiple-gate SOI MOSFETs: Device design guidelines,” IEEE Trans. Elec. Dev., 49, pp. 2222-2229 (2002)
[10]. S. Miyamoto, S. Maegawa, S. Maeda, T. Ipposhi, H. Kuriyama, T. Nishimura, and N. Tsubouchi, “Effect of LDD structure and channel poly-Si thinning on a gate-all-around TFT (GAT) for SRAMs,” IEEE Trans. Elec. Dev., 46, pp. 1693-1698 (1999)
[11]. M. Shur, “Physics of semiconductor devices, ” New Jersey, Prentice Hall, Inc., 1990
[12]. P. S. Lin, J. Y. Gue, and C. Y. Wu, “A quasi-two-dimensional analytical model for the turn-on characteristics of polysilicon thin film transistors,” IEEE Trans. Elec. Dev., 37, pp. 666-674 (1990)
[13]. G. Y. Yang, S. H. Hur, and C. H. Han, “A physical-based analytical turn-on model of polysilicon thin film transistors for circuit simulation,” IEEE Trans. Elec. Dev., 46, pp. 165-172 (1999)
[14]. E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser and J. J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics” IEEE Trans. Elec. Dev., 45, pp. 1350 (1998)
[15]. S. M. Sze, and K. K. NG, “Physics of semiconductor device,” published by John Wiley & Sons, pp. 438 (2007).