簡易檢索 / 詳目顯示

研究生: 黃博雍
Huang, Po-Yung
論文名稱: 氧化鋅奈米線光陽極之半固態染料敏化太陽能電池製作
ZnO Nanowires as Photoanode Material for Quasi-Solid State Dye-Sensitized Solar Cells
指導教授: 林鶴南
Lin, Heh-Nan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 53
中文關鍵詞: 氧化鋅奈米線光陽極染料敏化太陽能電池半固態
外文關鍵詞: dye-sensitized solar cells, gel electrolytes, quasi-solid state, ZnO nanowires
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,染料敏化太陽能電池 (dye-sensitized solar cells, DSCs) 由於更低的製造成本,並且有運用於可撓性基板的潛力引起了許多的注意以及研究。本實驗利用高溫熱蒸鍍法合成高品質的氧化鋅奈米線並應用於光陽極中,具備了良好電子傳遞能力,由於單純氧化鋅奈米線表面積過小,不利於大量染料吸附更,故利用額外加入氧化鋅奈米線提供分支成長的主幹,再經過二次成長的方式增加表面積達到提高染料吸附量的目的,也增強了光散射效果,將短路電流由單純奈米線光陽極的4.07 mA/cm2提升至分支狀結構光陽極的5.38 mA/cm2,轉換效率跟填充因子分別達到1.57 % 與0.50。另外,一般DSCs使用液態電解液,但電解液洩漏以及揮發的問題嚴重考驗封裝技術,目前也有許多研究投入於固態如有機或無機電洞傳遞材料、聚合物電解液,或半固態如膠態聚合物電解液等方式取代液態電解液。由於膠態電解液具備良好導電率,以及對光陽極更佳的介面接觸和良好的填洞能力,故本實驗使用膠態電解液 (gel electrolyte)組成半固態的DSCs,藉此防止電解液洩漏以及提高電池的穩定度,在效率及填充因子得到0.70 % 和0.54的結果,較低的短路電流以及轉換效率是由於相對液態電解液更低的離子擴散速率,不過半固態染料敏化太陽能電池有著更高的開路電壓。穩定度測試仍不盡理想,若能改善封裝技術則能更進一步改進電池穩定度。


    In recent years, much attention has been paid to the development of dye-sensitized solar cells (DSCs) because of their low production cost. In this study, the growth of well-aligned single-crystalline ZnO nanowires (NWs) is realized on bare transparent conductive oxide (TCO) glass substrates by thermal evaporation. Although the NWs provide a good electron transport path, the surface area of the NWs is too small for dye loading. In this study, additional ZnO NWs for backbones of branched NWs were added and a secondary growth was introduced to raise the surface area of the photoanode and enhance the light scattering effect. The Short-circuit current density(JSC) was improved to 5.38 mA/cm2 for the branched NW photoanode from 4.07 mA/cm2 for the bare NW photoanode. The highest conversion efficiency and the fill factor were around 1.57% and 0.50, respectively. On the other hand, liquid electrolytes are usually used in DSCs, rendering leakage and evaporation problems. To solve these problems, solid-state hole transporters, whether organic or inorganic, polymer electrolytes and gel polymer electrolytes have been used to replace liquid electrolytes in many reports. A gel electrolyte with good contact, reasonable conductivity, ease of fabrication, was prepared to make quasi-solid state DSCs. The highest efficiency of 0.7% and the fill factor of 0.54 have been achieved. In comparison with DSCs with liquid electrolytes, the relative low JSC and the efficiency are due to the lower ion diffusion velocity.

    總目錄 致謝 摘要 Abstract 總目錄 圖目錄 表目錄 第一章 簡介 1.1太陽能電池簡介與分類 1.2 染料敏化太陽能電池與光陽極 1.3 研究動機 第二章 染料敏化太陽能電池(Dye-sensitized Solar cell, DSCs) 2.1 染料敏化太陽能電池原理簡介 2.2光陽極及其奈米結構 2.3 光吸收 2.4 電荷分離 2.5 在光陽極中的電子傳遞 2.6 離子傳遞以及電解液 2.7 電荷再結合 第三章 文獻回顧 3.1 氧化鋅奈米線的合成 3.2 運用分支狀的氧化鋅奈米線作為光陽極之DSCs 3.3 膠態聚合物電解液 (Gel Polymer Electrolyte, GPEs) 3.4 電化學阻抗圖譜及DSCs等效電路 第四章 實驗方法與儀器 4.1 實驗儀器與藥品 4.2 實驗步驟 4.2.1 在TCO基板成長氧化鋅奈米線 4.2.2 二次成長氧化鋅奈米線 4.2.3 染料敏化太陽能電池製作 4.2.4 膠態電解液電導率量測 4.2.5 染料敏化太陽能電池效率量測 第五章 實驗結果與討論 5.1 氧化鋅奈米線的SEM分析 5.2二次成長氧化鋅奈米線及應用於DSCs 5.3膠態電解液電性量測及其DSCs效率 第六章 結論 參考文獻

    [1] M. Gätzel, Nature, 414, 338 (2001).
    [2] M. Gätzel, Nature, 403, 363 (2000).
    [3] J. Nelson, The Physics of Solar Cells, Imperial College Press;Distributed by World Scientific Pub. Co., London River Edge, NJ (2003).
    [4] 王釿鋊, 中技社通訊, 41, 5 (2002).
    [5] B. O'Regan, M. Gätzel, Nature, 353, 737 (1991).
    [6] M. Gätzel, Inorg. Chem., 44, 6841. (2005).
    [7] M. Gätzel, J. Photochem. Photobiol. C-Photochem. Rev., 4, 145, (2003).
    [8] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nature materials, 4, 455 (2005).
    [9] A. Kay, M. Gätzel, Chem. Mate., 14, 2930 (2002).
    [10] S. Chappel, S. G. Chen, A. Zaban, Langmuir, 18, 3336 (2002).
    [11] K. Sayama, H. Sugihara, H. Arakawa, Chem. Mate., 10, 3825 (1998).
    [12] J. Nelson, Phys. Rev. B 59, 15374 (1999).
    [13] E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, G. Boschloo, J. Phys. Chem. B 110, 16159 (2006).
    [14] Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Cryst. Growth Des., 7, 2467 (2007).
    [15] A. D. Pasquier, H. Chen, Y. Lu, Appl. Phys. Lett., 89, 253513 (2006).
    [16] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, Nano Lett., 7, 2183 (2007).
    [17] M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. D. Yang, J. Phys.Chem. B, 110, 22652 (2006).
    [18] T. Dittrich, E. A. Lebedev, J. Weidmann, Phys. Status Solidi A-Appl. Res., 165, R5 (1998).
    [19] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda, J. Phys.Chem. B, 110, 13872 (2006).
    [20] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gätzel, J. Phys. Chem. B, 107, 8981 (2003).
    [21] A. Hagfeldt, M. Gätzel, Acc. Chem. Res., 33, 269 (2000).
    [22] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc., 126, 12218 (2004).
    [23] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, M. Gätzel, Adv. Mater., 18, 1202 (2006).
    [24] W. Kubo, S. Kamube, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wasa, S. Yanagida, J. Phys. Chem. B, 107, 4374 (2003).
    [25] D. F. Liu, Y. J. Xiang, X. C. Wu, Z. X. Zhang, L. F. Liu, L. Song, X. W. Zhao, S. D. Luo, W. J. Ma, J. Shen, W. Y. Zhou, G. Wang, C. Y. Wang, S. S. Xie, Nano Lett., 6, 2375 (2006).
    [26] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, P. D. Yang, Adv. Mater., 13, 113 (2001).
    [27] H. J. Fan, P. Werner, M. Zacharias, Small, 2, 700 (2006).
    [28] S. T. Ho, C. L. Hsiao, H. Y. Lin, H. A. Chen, C. Y. Wang, H. N. Lin, J. Nanoscience and Nanotechnology, 10, 6473, (2010).
    [29] H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai, W. F. Hsieh, J. Phys. Chem. C, 112, 16359, (2008).
    [30] T. J. Kuo, C. N. Lin, C. L. Kuo, M. H. Huang, Chem.Mater., 19, 5143 (2007).
    [31] S. T. Ho, C. Y. Wang, H. L. Liu, H. N. Lin, Chem. Phys. Lett., 463, 141 (2008).
    [32] G. W. Ho, A. S. W. Wong, Appl. Phys. A-Mater. Sci. Process., 86, 457 (2007).
    [33] W. I. Park, Y. H. Jun, S. W. Jung, G. C. Yi, Appl. Phys. Lett., 82, 964 (2003).
    [34] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
    [35] W. Lu, C. M. Lieber, J. Phys. D: Appl. Phys., 39, R387 (2006).
    [36] P. D. Yang, C. M. Lieber, Science, 273, 1836 (1996).
    [37] P. D. Yang, C. M. Lieber, J. Mater. Res. 12, 2981 (1997).
    [38] L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. D. Yang, Nano Lett., 5, 1231 (2005).
    [39] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. D. Yang, Inorg. Chem., 45, 7535 (2006).
    [40] G. K. Varghese, O. K. Paulose, M. Shankar, K. Grimes,C. A. Sol. Energy Mater. Sol. Cells, 90, 2011, (2006).
    [41] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, Appl. Phys. Lett., 90, 263501, (2007).
    [42] J. B. Baxter, E. S. Aydil, Sol. Energy Mater. Sol. Cells, 90,607 (2006).
    [43] Kar, S. Santra, S. J. Phys. Chem. C, 112, 8144 (2008).
    [44] H. M. Cheng, W. H. Chiu, C. H. Lee, S. Y. Tsai, W. F. Hsieh, J. Phys. Chem. C, 112, 16359, (2008).
    [45] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, Md.A.B.H. Susan, N. Tanabe, M. Watanabe, J. Photochem. Photobiol. A, 164,87 (2004).
    [46] B. Xue, H. Wang, Y. Hu, H. Li, Z. Wang, Q. Meng, X. Huang, L. Chen, O. Sato, A. Fujishima, C. R. Chim., 9, 627 (2006).
    [47] J. Reiter, J. Vondra´ k, J. Micha´ lek, Z. Micˇka, Electrochim. Acta , 52, 1398 (2006).
    [48] P. Wang, S. M. Zakeeruddin, J. -E. Moser, M. Gätzel, J. Phys. Chem. B, 107, 13280 (2003).
    [49] S. Murai, S. Mikoshiba, H. Sumino, T. Kato, S. Hayase, Chem. Commun., 13, 1534 (2003).
    [50] B. O’Regan, D. T. Schwartz, Chem.Mater., 10, 1501 (1998).
    [51] B. O’Regan, F. Lenzmann, R. Muis, J. Wienke, Chem. Mater., 14, 5023 (2002).
    [52] N. Ikeda, K. Teshima, T. Miyasaka, Chem. Commun., 16, 1733 (2006).
    [53] H. W. Han, W. Liu, J. Zhang, X. -Z. Zhao, Adv. Funct. Mater., 15, 1940 (2005).
    [54] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Gätzel, Chem. Commun., 24, 2972 (2002).
    [55] O. A. Ileperuma, M. A. K. L. Dissanayake, S. Somasundaram, Electrochim. Acta, 47, 2801 (2002).
    [56] J. Kru¨ ger, R. Plass, L. Cevey, M. Piccirelli, M. Gra¨ tzel, Appl. Phys. Lett., 79, 2085 (2001).
    [57] E. Stathatos, P. Lianos, S. M. Zakeeruddin, P. Liska, M. Gra¨ tzel, Chem.Mater., 15, 1825(2003).
    [58] S. R. Scully, M. T. Lloyd, R. Herrera, E. P. Giannelis, G. G. Malliaras, Synth. Met., 144, 291 (2004).
    [59] S. Sakaguchi, H. Ueki, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase, J. Photochem. Photobiol. A, 164, 117 (2004).
    [60] J. Kang, W. Li, X. Wang, Y. Lin, X. Xiao, S. Fang, Electrochim. Acta, 48, 2487 (2003).
    [61] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gra¨ tzel, Nat. Mater., 20, 402 (2003).
    [62] Y. T. Shi, C. Zhan, L. D. Wang, B. B. Ma, R. Gao, Y. F. Zhu, Y. Qiu, Phys. Chem. Chem. Phys., 11, 4230 (2009).
    [63] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochim. Acta, 47, 4213 (2002).
    [64] J. Bisquert, J. Phys. Chem. B, 106, 325 (2002).
    [65] M. Adachi, M. Sakamoto, J. T. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B, 110, 13872 (2006).
    [66] L. Han, N. Koide, Y. Chiba, A. Islam, R. Komiya, N. Fuke, A. Fukui, R. Yamanaka, Appl. Phys. Lett., 86, 213501 (2005).
    [67] V. Yong, S. T. Ho, Robert P. H. Chang, Appl. Phys. Lett., 92, 143506 (2008).
    [68] A. Sadkowski, J. Electroanal. Chem., 465, 119 (1999).
    [69] I. Mora-Sero, J. Bisquert, F. Fabregat-Santiago, G. Garcia-Belmonte, G.Zoppi, K. Durose, Y. Proskuryakov, I. Oja, A. Belaidi, T. Dittrich, R.Tena-Zaera, A. Katty, C. Levy-Clement, V. Barrioz, and S. Irvine, Nano Lett., 6, 640 (2006).
    [70] E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley-Interscience, Hoboken, 2005).
    [71] J.H. Wu, S.C. Hao, Z. Lan, J.M. Lin, M.L. Huang, Y.F. Huang, L.Q. Fang, S. Yin, T. Sato, Adv. Funct. Mater., 17, 2645 (2007).
    [72] X. L. Sheng, Y. Zhao, J. Zhai, L. Jiang, D. B. Zhu, Chem. Eng. Comm., 195, 375 (2008).
    [73] H. H. Chen, Z. Q. Duan, Y. C. Lu, A. Du Pasquier, J. Electronic Mater., 38, 1612 (2009).
    [74] J. H. Hyung, D. I. Suh, J. M. Chun, O. B. Yang, E. K. Suh, S. K. Lee, J. Nanoscience and Nanotechnology, 8, 5109 (2008).
    [75] A.F. Nogueira, C. Longo, M. A. De Paoli, Coordination Chemistry Reviews, 248, 1455 (2004).
    [76] J.E. Benedetti, A. D. Goncalves, A. L. B. Formiga, M. A. De Paoli, X. Li, J. R. Durrant, A.F. Nogueira, Journal of Power Sources, 195, 1246 (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE