研究生: |
黃國洋 Huang, Kuo-Yang |
---|---|
論文名稱: |
銅錳鋅觸媒流佈於具奈微米結構之低溫微型甲醇重組製氫反應器之研究 Cu-Mn-Zn catalysts prepared for methanol oxidation reforming in micro-channel reactors with nano and micro-structres |
指導教授: |
曾繁根
Tseng, Fang-Gang |
口試委員: |
葉君棣
李耀昌 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 110 |
中文關鍵詞: | 甲醇產氫 、微流道 、觸媒塗佈 |
外文關鍵詞: | Hydrogen production from methanol, micro-channels, catalyst coating |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In methanol reforming, there are four major reactions. Among them, partial oxidation of methanol (POM) is an exothermic reaction that can reach steady state quickly without extra heat supply, and thus is suitable for being used in micro-channel reactors. Micro-channel reactors have advantages of low pressure drop, compact size, and fast in thermal and mass transfer. Based on our previous research, we have developed Cu/ZnO based catalysts modified by manganese which had great performance under POM reaction. Therefore, we used it in our micro-channels.
When coating catalysts onto the silicon based micro-channels, catalysts after calcinations would peel off. The loading amount of catalyst is one of the important factors that determine the efficiency of micro-reactors. As a result, it’s crucial to increase the amount of catalysts and coat them uniformly onto the micro-channels.
The catalysts were prepared by three different procedures: citrate-complex method, citrate-gel method and slurry method. We used micro and nano-structures inside micro-reactors to enhance the adhesion between catalysts and micro-channels. We also study the effect of catalyst loading, loading times, sizes of catalyst particles, depth of micro-channels and speed of reactant gases to the efficiency of micro-reactors.
We used slurry method to wash coat catalysts. Alumina sol (boehmite/bentonite) was selected as inorganic binder for the coating. In order to prevent extensive clog of catalyst particles inside the micro-channels, we increased the depth of channels from 25 μm to 100 μm, 200 μm and 300 μm for testing performances. It showed that the depth of 200 μm had the highest performance after repetitive loading of catalyst, which led to 63% of CMeOH and 3.7*10-6(mol/min) of hydrogen yield at 250℃.
After a series of comparisons, we knew that 200 μm deep channels without binders after repetitive loading had the best performance, which had 100% of CMeOH and 1.6*10-5(mol/min) of hydrogen yield at 250℃. To increase the reaction area of the catalyst layer, we tried to add micro-column structures to the channels. And we had adopted a new coating method to prevent clogs of catalyst in the micro-columns.
The FTIR spectra of product gases from the micro-reactors showed that the activity of the channels increased as the ratio of B/C decreased and temperature increased. And channels without binders had the best performance with little amount of byproduct.
在甲醇重組反應製氫中,總共有四個主要的分解反應,其中POM反應為一放熱反應,不需額外添加熱源即可達到穩定態(steady state),有利於微型甲醇重組器系統之微小化。微型重組器相較於一般的固定式填充床,具有低壓降、體積精巧、快速的熱傳與質傳等優點。本實驗室已發展Cu/Mn/ZnO觸媒,其於甲醇部份氧化反應中具有極佳之效能,故延用此觸媒沉積於微型甲醇重組器中。
觸媒在沉積於矽基材為主的微流道上時,於煅燒後會有脆化剝落的情形發生,流道上的觸媒沉積量為主要影響反應器效能優劣的重要因素之一,因此如何將觸媒塗佈上流道增加觸媒量是一項重要的課題。本研究利用複合、膠體與泥漿法製備觸媒流佈於流道中,並以微米柱與奈米線等結構增加觸媒與流道間的吸附能力,期能提升反應器的反應效能,同時研究觸媒濃度、流佈次數、顆粒大小、流道深度及製程方式對於微流道反應系統的影響。
要產生良好的附著能力,必須於觸媒及矽基材間產生化學鍵結。先前的研究利用檸檬酸與酸洗後矽基材產生氫氧基(-OH)進行鍵結,但在高溫煅燒中檸檬酸裂解使得附著力下降。於是最後我們採用泥漿法(slurry method),選用無機氧化鋁溶膠(boehmite/bentonite)作為黏著劑。為防止觸媒顆粒於流道內的阻塞,將流道深度加深至100、200及300 μm,並做重複流佈觸媒的比較,其中以200 μm經重複流佈觸媒後的反應性為最佳,於250℃下可達到63%的甲醇轉換率與3.7*10-6(mol/min)的氫氣產率。
由一系列參數的比較後,我們得知流道以200 μm,不添加黏著劑經重複流佈後擁有最佳的反應能力,在250℃下可達到100%的甲醇轉換率與1.6*10-5(mol/min)的氫氣產率。為避免微米柱造成觸媒的阻塞,我們採用新塗佈方式,硬膜製程代替傳統的觸媒流佈方式。經過傅立葉紅外線光譜儀分析以不同濃度製備之反應器的產物後,我們發現反應性隨B/C比例減少與溫度升高而增加,同時以不添加黏著劑的流道擁有最佳活性且最少副產物的生成。
[1] Birch Charles, "Purpose in the Universe: A Search for Wholeness," Zygon, 6, No.1, Pages 4-27 1971-MAR
[2] A. Trovarelli, Catal Rev-Sci Eng, 38(1996) 439.
[3] J. Larminie, A. Dicks, “Fuel cell systems explained”, John Wiley & Sons, (2002) Chapter 1.
[4] M. P. Hogarth, T. R. Ralph, “Catalysis for Low Temperature Fuel Cells” Platinum Met. Rev. 46 (2002) 146-164.
[5] T. R. Ralph, G. A. Hards, “Powering the cars and homes of tomorrow” Chem. Ind. 9 (1998) 337-342.
[6] U.G. Bossel, “Proceedings of the European Fuel cell Forum Portable Fuel cell Conference”, Lucerne (1999) 79-84.
[7] J. Zieger, Hydrogen energy progress 10 (1994) 1427-1437.
[8] H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne (1999) 159.
[9] D. Reister, W. Strobl, Hydrogen energy progress IX (1992) 1202.
[10] K. Ueoka, S. Miyauchi, Y. Asakuma, T. Hirosawa, Y. Morozumi, H. Aokia, T. Miura, “An application of a homogenization method to the estimation of effective thermal conductivity of a hydrogen storage alloy bed considering variation of contact conditions between alloy particles”, Int. J. Hydrog. Energy 32 (2007) 4225-4232.
[11] Paul Vermeulen, Emile F. M. J. van Thiel, Peter H. L. Notten, Chem. Eur. J. 13 (2007) 9892.
[12] A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook, Van Nostrand, New York (1989) 177.
[13] D.S. Watkins, in: L.J.M.J. Blomen, M.N. Mugerwa (Eds.), Fuel Cell Systems, Plenum Press, New York (1993) p. 493.
[14] J. Zieger, Hydrogen energy progress X (1994) 1427-1437.
[15] H. Kahrom, Proceedings of the European Fuel cell Forum Portable Fuel cell Conference, Lucerne (1999) 159.
[16] B. Lindstrom, L.J. Pettersson, “Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications”, Int. J. Hydrog. Energy 26 (2001) 923-933.
[17] J.R. Rostrup-Nielsen, T.S. Christensen, I. Dybkjaer, “Steam reforming of liquid hydrocarbons” Recent Adv. Basic Appl. Aspects Ind. Catal. 113 (1998) 81-95.
[18] T. Takahashi, M. Inoue, T. Kai, Appl. Catal. A 218 (2001) 189.
[19] S. Velu, K. Suzuki, T. Osaki, “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catal. Lett. 62 (1999) 159-167.
[20] Z. F. Wang, J. Y. Xi, W. P. Wang, G. X. Lu, J., “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures” Mol. Catal. A: Chemical, 191 (2003) 123-136.
[21] M.L. Cubeiro, J.L.G. Fierro, “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Appl. Catal. A 168 (1998) 307-322.
[22] S. Schuyten, E.E. Wolf, “Selective combinatorial studies on Ce and Zr promoted Cu/Zn/Pd catalysts for hydrogen production via methanol oxidative reforming”Catal. Lett. 106 (2006) 7-14.
[23] L. Mo, X. Zheng, C.T. Yeh, “Selective production of hydrogen from partial oxidation of methanol over silver catalysts at low temperatures” Chem. Commun. (2004) 1426-1427.
[24] S. Velu and K. Suzuki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl oxide catalysts: effect of substitution of zirconium and cerium on the catalytic performance”, Top. Catal. 22 (2003) 235-244.
[25] J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R.M. Navarro, J.L.G. Fierro, “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389-403.
[26] M. Turco, G. Bagnasco, C. Cammarano, P. Senese, U. Costantino, M. Sisani, “Cu/ZnO/Al2O3 catalysts for oxidative steam reforming of methanol: The role of Cu and the dispersing oxide matrix”, Appl. Catal. B-Environ. 77 (2007) 46–57.
[27] T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, “Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming”, J. Mol. Catal. A: Chem. 268 (2007) 185-194.
[28] T. Shishido, M. Yamamoto, D. Li, Y. Tian, H. Morioka, M. Honda, T. Sano, K. Takehira, “Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation”, Appl. Catal. A: General 303 (2006) 62–71
[29] J. Patt, D. J. Moon, C. Phillips, L. Thompson, “Molybdenum carbide catalysts for water–gas shift”, Catal. Latt. 65(2000) 193-195.
[30] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis, “A comparative study of Pt/γ-Al2O3, Au/ -Fe2O3 and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today, 75(2002) 157-167.
[31] J. B. Wang, S. C. Lin, T. J. Huang, “Selective CO oxidation in rich hydrogen over CuO/samaria-doped ceria”, Appl. Catal. A-Gen., 232(2002) 107-120
[32] G. Avgouropoulos, T. Ioannides, “Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method”, Appl. Catal. A-Gen., 244(2003) 155-167.
[33] A. J. Dyakonov, “Abatement of CO from relatively simple and complex mixtures - I. Oxidation on Pd-Ag/zeolite catalysts”, Appl. Catal. B-Environ., 45(2003) 241-309.
[34] B. Qiao, Y. Deng, “Highly effective ferric hydroxide supported gold catalyst for selective oxidation of CO in the presence of H2” Chem. Comm., (1997) 2192-2193.
[35] Y.-F. Han, M. Kinne, R. J. Behm, “Selective oxidation of CO on Ru/gamma-Al2O3 in methanol reformate at low temperatures”, Appl. Catal. B-Environ., 52(2004) 123-134.
[36] I. Aartun, H. J. Venvik, A. Holmen, P. Pfeifer, O. Gorke, K. Schubert, “Temperature profiles and residence time effects during catalytic partial oxidation and oxidative steam reforming of propane in metallic microchannel reactors”, Catal. Today 110(2005) 98-107.
[37] S. Takenaka, T. Shimizu, K, Otsuka “Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts ”, Int. J. Hydrog. Energy, 29(2004) 1065-1073
[38] Shetian Liu, Katsumi Takahashi, Kenji Fuchigami, Kazuo Uematsu, “, “Hydrogen production by oxidative methanol reforming on PdZnO”, Appl.Catal. A: Gen. 299 (2006) 58–65
[39] Shetian Liu, Katsumi Takahashi, Kazuo Uematsu, Muneo Ayabe, “Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component”, Applied Catal. A: General 277 (2004) 265–270
[40] Stephen Schuyten, Peter Dinka, Alexander S. Mukasyan, Eduardo Wolf, “A Novel Combustion Synthesis Preparation of CuO/ZnO/ZrO2/Pd for Oxidative Hydrogen Production from Methanol”, Catal. Lett. 121 (2008) 189-198
[41] Liu. Shetian, Takahashi, Katsumi, Eguchi, Haruki, Uematsu, Kazuo, “Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials”, Catal. Today 129 (2007) 287-292
[42] Agrell, J., Birgersson, H., Boutonnet, M., Melian-Cabrera, I., Navarro, R.M., Fierro, J.L.G., “Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3”, J. Catal. 219 (2003) 389–403
[43] R. M. Navarro, M. A. Pena, and J. L. G. Fierro, “Hydrogen production reactions from carbon feedstocks: Fossils fuels and biomass”, Chem. Rev. 107 (2007) 3952-3991
[44] M. L. Cubeiro, J. L. G. Fierro, “Partial oxidation of methanol over supported palladium catalysts”, Appl. Catal. A-Gen., 168(1998) 307-322
[45] S. Murcia-Mascaros, R. M. Navarro, L. Gomez-Sainero, U. Costantino, M. Nocchetti, J. L. G. Fierro, “Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal., 198(2001) 338-347
[46] H. C. Yang, F. W. Chang,. L. S. Roselin, “Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts” J. Mol. Catal. A-Chem. 276 (2007) 184-190
[47] J. P. Breen, J. R. H. Ross, “Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts” Catal. Today 51 (1999) 521-533
[48] Wang, Z., W. Wang, G. Lu, “Studies on the active species and on dispersion of Cu in Cu/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy. 28 (2003) 151-158.
[49] Hsien-Chang Yang, Feg-Wen Chang, L. Selva Roselin, “Hydrogen production by partial oxidation of methanol over Au/CuO/ZnO catalysts”, J. Mol. Catal. A-Chem, 276(2007)184-190
[50] M.R. Morales, B.P. Barbero and L.E. Cadus, “Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts”, Appl. Catal. B-Environ. 67 (2006) 229–236
[51] R. Craciun, B. Nentwich, K. Hadjiivanou, H. Kno‥zinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A 243 (2003) 67-79.
[52] F.M. Gottschalk, G.J. Hutchings, “Manganese oxide water-gas shift catalysts initial optimization studies”, Appl. Catal. 51 (1989), pp. 127–139
[53] G.J. Hutchings, R.G. Copperthwaite, F.M. Gottschalk, R. Hunter, J. Mellor, S.W. Orchard, T. Sangiorgio, “A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water –gas shift reaction”, J. Catal. 137 (1992), pp. 408–422.
[54] M.R. Morales, B.P. Barbero and L.E. Cadus, “Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts”, Appl. Catal. B-Environ. 67 (2006) 229–236
[55] J. Papavasiliou and G. Avgouropoulos, T. Ioannides. “Steam reforming of methanol over copper–manganese spinel oxide catalysts”, Catal. Commun. 6 (2005) 497–501
[56] J. Papavasiliou, G. Avgouropoulos, T. Ioannides. “In situ combustion synthesis of structured Cu–Ce–O and Cu–Mn–O catalysts for the production and purification of hydrogen”, Appl. Catal., B Environ. 66 (2006), pp. 168–174
[57] J. Papavasiliou, G. Avgouropoulos, T. Ioannides, “Combined steam reforming of methanol over Cu–Mn spinel oxide catalysts”, J. catal. 251 (2007) 7–2
[58] M.C. A ’ lvarez-Galva’n, V.A. de la Pena O’ Shea, J. L. G. Fierro, P.L. Arias, Catal. Commun. 4 (2003) 223.
[59] Du, Xiaru, Yuan, Zhongshan, Cao, Lei, Zhang, Chunxi, Wang, Shudong, “Water gas shift reaction over Cu–Mn mixed oxides catalysts: Effects of the third metal”, Fuel Process. Technol. 89 (2008) 131-138
[60] Kajornsak Faungnawakij, Naohiro Shimoda, Tetsuya Fukunaga, Ryuji Kikuchi, Koichi Eguchi, Applied Catalysis A: General 341 (2008) 139–145
[61] Qi Liang, Kaidong Chen, Wenhua Hou, Qijie Yan , Applied Catalysis A: General 166 (1998) 191-199
[62] W. Liu, K. Kowal, and G. C. Farrington, J. Electrochem. Soc., Vol. 143, No. 11, November 1996J.
[63] Young-Min Kong, Hyoun-Ee Kim, Hae-Won Kim, J. Am. Ceram. Soc., 90 [1] 298–302 (2007)
[64] Zhenxing Yue, Ji Zhou, Longtu Li, Hongguo Zhang, Zhilun Gui, Journal of Magnetism and Magnetic Materials 208 (2000) 55-60
[65] Jun Bao, Yi-Lu Fu, Cuo-Zhu Bian, Catal Lett (2008)121:151-157
[66] S. Srinivas, et al., A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed micro-reactor, Appl. Catal. A: Gen. 274 (1-2) (2004) 285.
[67] A. V. Pattekar, M. V. Kothare, A microreactor for hydrogen production in micro fuel cell applications, J. Microelectromech. Syst. 13(1) (2004) 7.
[68] S. K. Ajmera, et al., Microreactors for measuring catalyst activity and determining reaction kinetics, Sci. Technol. Catal. 145 (2003) 97.
[69] Y. Kikutani, et al., Pile-up glass microreactor, Lab. On A Chip 2 (4) (2002) 193.
[70] A. Stefanescu, A. C. van Veen, C. Mirodatos, J. C. Beziat, E. Duval-Brunel, “Wall coating optimization for microchannel reactors” Catalysis Today 125 (2007) 16-23
[71] G. Germani, A. Stefanescu, Y. Schuurman, A.C. van Veen, Chem. Eng. Sci. (2007)
[72] M. S. Lim, M. R. Kim, J Noh, S.I. Woo, J. Power Sources 140 (2005) 66-71
[73] J. Y. Won, H. K. Jun, M. K. Jeon, S. I. Woo, Catal Today 111 (2006) 158-163
[74] Travis Conant, Ayman Karim, Abhaya Datye, “Coating of steam reforming catalysts in non-porous multi-channeled microreactors” Catalysis Today 125 (2007) 11-15
[75] T. Conant, A. Karim, S. Rogers, S. Samms, G. Randolph, A. Datye, “Wall coating behavior of catalysts slurries in non-porous ceramic microstructures” Chemical Engineering Science 61 (2006) 5678-5685
[76] Frank, B., Jentoft, F.C., Soerijanto, H. , Krohnert, J. , Schlogl, R., Schomacker, R., “Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics”, 2007, Journal of Catalysis, 246, 177–192
[77] Wolters, M., Daly, H., Goguet, A., Meunier, F. C., Hardacre, C., Bitter, J. H., de Jongh, P. E., de Jong, K. P. “DRIFTS/MS/Isotopic Labeling Study on the NO-Moderated Decomposition of a Silica-Supported Nickel Nitrate Catalyst Precursor”, 2010, Journal of physical chemistry c, 114, 7839-7845
[78] Wu, Zili., Zhou, Shenghu., Zhu, Haoguo., Dai, Sheng., Overbury, Steven H., “DRIFTS-QMS Study of Room Temperature CO Oxidation on AU/SiO2 Catalyst: Nature and Role of Different Au Species”, 2009, Journal of Catalysis, 113, 3726-3734
[79] Landong Li, Qun shen, Jie Cheng, Zhengping Hao, “Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra”, 2010, Catalysis Today, 158, 361-369
[80] S. Parres-Esclapez, I. Such-Basanez, M. J. Illan-Gomez, C. Salinas-Martinez de Lecea, A. Bueno-Lopez, “Study by isotopic gases and in situ spectroscopies (DRIFTS, XPS and Raman) of the N2O decomposition mechanism on Rh/CeO2 and Rh/c-Al2O3 catalysts”, 2010, Journal of Catalysis, 276, 390-401
[81] Liang Chen, Junhua Li, Maofa Ge, “DRIFT Study on Cerium-Tungsten/Titania Catalyst for Selective Catalytic Reduction of NOx with NH3”, 2010, Environ. Sci. Technol, 44, 9590-9596
[82] O. P. Tkachenko, S. A. Nikolaev, K. V. Klementiev, A. V. Naumkin, D. Yu. Murzin, “DRIFT, XPS and XAS Investigation of Au-Ni/Al2O3 Synergetic Catalyst for Allylbenzene Isomerization”, 2009, Top Catal, 52, 344-350
[83] Y. S. Wang, “Design, fabrication and test of methanol micro-reformer supported with CNTs” MS. Thesis, National Tsing Hua University (2009)
[84] D. P. Yu et al., Solid State Commun,105 (1998), p. 403.
[85] K.Q. Peng et al., Adv. Funct. Mater., 16 (2006), p. 387.
[86] S.Y. Huang, S.M. Chang, C.T. Yeh, “Characterization of surface composition of platinum and ruthenium nanoalloys dispersed on active carbon” J. Phys. Chem. B 110 (2006) 234-239.
[87] T. Kim, S. Kwon, “Preparation of Cu/ZnO for fabrication of a micro methanol reformer”Chem. Eng. J. 123 (2006) 93-102
[88] W. Kuang, Y. Fan, K. Yao, Y. Chen, “Preparation and characterization of ultrafine rare earth molybdenum complex oxide particles”J. solid state chemistry 140 (1998) 354-360.
[89] M.F.M. Zwinkels, S.G. Jaras, P.G. Menon, K.I. Asen, Preparation of anchored ceramic coatings on metal substrates: a modified sol–gel technique using colloidal silica sol, J. Mater. Sci. 1 (31) (1996) 6345–6349.
[90] A.F. Popa, S. Rossignol, C. Kappenstein, Ordered structure and preferred orientation of boehmite films prepared by the sol–gel method, J. Non-Cryst. Solids 306 (2002) 169–174.
[91] S. Ananthakumar, V. Raja, K.G.K. Warrier, Effect of nanoparticulate boehmite sol as a dispersant for slurry compaction of alumina ceramics, Mater. Lett. 43 (2000) 174-179
[92] S. Kwon, G.L. Messing, Constrained densification in boehmite alumina mixtures for the fabrication of porous alumina ceramics, J. Mater. Sci. 15 (33)(1998) 913-921
[93] D. E. Park, T. Kim, S. Kwon, C. K. Kim, E. Yoon, “Micromanchined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells”Sensors and Actuators A 135 (2007) 58-66
[94] T. Kim, S. Kwon, “MEMS fuel cell system integrated with a methanol reformer for a portable power source”Sensors and Actuators A 154 (2009) 204-211
[95] C. Agrafiotis, A. Tsetsekou, A. Ekonomakou, “The effect of particle size on the adhesion properties of oxide washcoats on cordierite honeycombs”Journal of materials science letters 18 (1999) 1421-1424
[96] C. Agrafiotis, A. Tsetsekou, “The effect of powder characteristics on washcoat quality. Part II: Zirconia, titania washcoats- multilayered structures”Journal of the European ceramic society 20 (2000) 825-834