簡易檢索 / 詳目顯示

研究生: 洪啟琮
Hong, Chitsung
論文名稱: 奈米多孔陽極氧化鋁模板技術開發及其於微元件應用之研究
Development of Nanoporous Anodic Aluminum Oxide Template technology and Its Application for Micro Devices
指導教授: 方維倫
Fang, Weileun
傅建中
Fu, Chien-Chung
口試委員: 鄭裕庭
楊燿州
趙如蘋
楊富量
傅建中
方維倫
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 149
中文關鍵詞: 奈米多孔陽極氧化鋁觸碰感測液晶顯示軟性顯示奈米科技軟性技術微機電技術
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米多孔陽極氧化鋁模板具有優異電性、光學和機械結構等特性。本文利用MEMS(Microelectromechanical systems,簡稱MEMS)微加工技術,開發批量化且可重複製作(Reproducible)奈米多孔陽極氧化鋁模板技術,透過多樣基板化的奈米多孔陽極氧化鋁模板,有效發揮奈米多孔模板特性於微元件應用。本文整合奈米多孔陽極氧化鋁模板於各種基板上。開發方法簡述如下:透過兩階段陽極氧化法步驟定義奈米多孔陽極氧化鋁模板於矽、玻璃以及軟性基板,其間利用微奈米加工製程,解決奈米多孔陽極氧化鋁模板與基板附著性的問題,且經過微奈米加工製程佈局,調變奈米多孔模板結構完成具電性、光學、機械結構特性的奈米多孔陽極氧化鋁模板之微元件。利用奈米多孔模板技術整合微奈米加工製程,開發電性、光學、機械結構特性的三項奈米多孔陽極氧化鋁模板之微元件:(1)矽基奈米多孔陽極氧化鋁模板之電容觸碰感測元件。奈米多孔陽極氧化鋁模板增加元件感測面積,提升電容元件效益;其元件的介電特性為7.49且提供0.21%(∆C/μm2)的觸碰感測靈敏度,可有效量測微小生物靜動態觸碰訊號。(2)玻璃基板奈米多孔陽極氧化鋁模板之液晶顯示元件。由奈米多孔陽極氧化鋁模板提供60-80%的光學穿透特性以及液晶垂直配向結構。顯示操作在3Vrms具有32%光學穿透率以及62.5ms的顯示反應時間。(3)軟性基板奈米多孔陽極氧化鋁模板之液晶顯示元件。奈米多孔陽極氧化鋁模板提供光學操作以及機械結構可撓性,其軟性奈米多孔模板提供50-60%光學穿透特性以及撓性液晶垂直配向結構,撓性顯示操作在1.8Vrms具有26%光學穿透率以及18ms的顯示反應時間。 綜合上敘,透過本研究所得之結果與分析可發揮奈米多孔陽極氧化鋁模板技術於微元件設計製作的參考與應用。


    摘要 III Abstract IV 圖目錄 VIII 表目錄 XII 第1章 序論 1 1-1 前言 1 1-2 研究背景 4 1-2.1 奈米多孔陽極氧化鋁模板……………………………4 1-2.2 奈米多孔陽極氧化鋁模板技術運用………………....8 1-3 研究目標 12 1-4 論文架構 14 第2章 奈米多孔陽極氧化鋁模板技術 32 2-1 奈米多孔陽極氧化鋁模板技術 34 2-2 矽基板奈米多孔陽極氧化鋁模板技術 37 2-2.1 矽基板奈米多孔陽極氧化鋁模板設計與製作……..37 2-2.2 矽基板奈米多孔陽極氧化鋁模板之結構特性……..37 2-3 玻璃基板奈米多孔陽極氧化鋁模板技術 37 2-3.1 玻璃基板奈米多孔陽極氧化鋁模板設計與製作…..37 2-3.2 玻璃基板奈米多孔陽極氧化鋁模板之結構特性…..38 2-4 軟性基板奈米多孔陽極氧化鋁模板技術 38 2-4.1 軟性基板奈米多孔陽極氧化鋁模板設計與製作…..39 2-4.2 軟性基板奈米多孔陽極氧化鋁模板之結構特性…..40 2-5 奈米多孔陽極氧化鋁模板技術發展 40 第3章 矽基板奈米多孔陽極氧化鋁模板技術運用 54 3-1 電容觸碰感測元件設計概念 55 3-2 電容觸碰感測元件製作與結果 58 3-3 電容觸碰感測元件量測與討論 61 3-3.1 矽基奈米多孔陽極氧化鋁之電容元件特性..............61 3-3.2 電容觸碰感測元件特性..............................................63 3-3.3 電容觸碰感測元件應用..............................................64 3-4 小結 69 第4章 玻璃基板奈米多孔陽極氧化鋁模板技術運用 85 4-1 液晶顯示元件設計概念 86 4-2 液晶顯示元件製作與結果 89 4-3 液晶顯示元件量測與討論 92 4-3.1 玻璃基板奈米多孔陽極氧化鋁之光學特性..............92 4-3.2 玻璃基板奈米多孔陽極氧化鋁之液晶配向特性......92 4-3.3 液晶顯示元件特性……………………………..........92 4-3.4 液晶顯示元件應用……………………………..........92 4-4 小結 98 第5章 軟性基板奈米多孔陽極氧化鋁模板技術運用 111 5-1 撓性液晶顯示元件設計概念 112 5-2 撓性液晶顯示元件製作與結果 114 5-3 撓性液晶顯示元件量測與討論 117 5-3.1 軟性基板奈米多孔陽極氧化鋁之光學特性..............117 5-3.2 軟性基板奈米多孔陽極氧化鋁之液晶配向特性......118 5-3.3 撓性液晶顯示元件特性..............................................119 5-3.4 撓性液晶顯示元件應用..............................................120 5-4 小結 122 第6章 結論與未來工作 132 6-1 結論 132 6-2 未來工作 135 參考文獻 138 論文著作 148

    [1] H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays Made by Two-Step Replication of Honeycomb Structure of Anodic Alumina,” Science, 268, pp. 1466-1468, 1995
    [2] P. G. Miney, P. E. Colavita, M. V. Schiza, R. J. Priore, F. G. Haibach and M. L. Myrick, “Growth and Characterization of A Porous Aluminum Oxide Film Formed on An Electrically Insulating Support,” Electrochem. Solid State Lett., 6, pp. B42-B45, 2003
    [3] Y. Zhao, M. Chen, Y. Zhang, T. Xu, and W. Liu, “A Facile Approach to Formation of Through-Hole Porous Anodic Aluminum Oxide Film,” Mater. Lett., 59, pp. 40-43, 2005
    [4] G. E. Thompson, “Porous Anodic Alumina Fabrication, Characterization and Applications,” Thin Solid Films, 297, pp.192-201, 1997
    [5] O.Jessensky, F. Muller, and U. Gosele, “Self-Organized Formation of Hexagonal Pore Structure in Anodic Alumina,” Appl. Phys. Lett., 72, pp. 1173-1175, 1998.
    [6] C. Hennesthal, “Anodization of Aluminum: New Applications for A Common Technology,” Application report nanowizard, JPK Instruments AG, Germany, 2003
    [7] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, and C. E. Blanco-Pinzon, “A Tracer Study of Porous Anodic Alumina,” Electrochem. Solid State Lett., 9, pp. B47-B51, 2006.
    [8] S. K. Thamida, and H. C. Chang, “Nanoscale Pore Formation Dynamics During Aluminum Anodization,” Chaos, 12, pp. 240-251, 2002.
    [9] F. Li, L. Zhang and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater., 10, pp. 2470-2480, 1998.
    [10] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., 84, pp. 6023-6026, 1998.
    [11] F. Zhang, X.Liu, C. Pan, and J. Zhu, “Nanoporous Anodic Aluminum Oxide Membranes with 6-19nm Pore Dimaters Formed by A Low-Potential Anodizing,” Nanotechnology, 18, pp. 345302, 2007.
    [12] W. Lee, R. Scholz, and U. Gosels, “A Continuous Process for Structurally Well Defined Al2O3 Nanotubes Based on Pulse Anodization of Aluminum,” Nano Lett., 8, pp. 2155-2160, 2008.
    [13] W. Lee, R. Ji, U. Gosels, and K. Nielsch, “Fast Fabrciation of Long-Range Ordered Porous Alumina Membranes by Hard Anodization,” Nat. Mater., 5, pp. 741-747, 2006.
    [14] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, and U. Gosels, “Structural Engineering of Nanoporous Anodic Aluminum Oxide by Pulse Anodization of Aluminium,” Nat. Nanotechnol., 3, pp. 234-239, 2008.
    [15] K. Lee, Y. Tang, and M. Ouyang, “Self-Ordered, Controlled Structure Nanoporous Membranes Using Constant Current Anodization,” Nano Lett., 8, pp. 4624-4629, 2008.
    [16] S. Zhao, K. Chan, A. Yelon, and T. Veres, “Novel Structure of AAO Film Fabricated by Constant Current Anodization,” Adv. Mater., 19, pp. 3004-3007, 2007.
    [17] J. E. Houser, and K. R. Hebert, “The Role of Viscous Flow of Oxide in the Growth of Self Ordered Porous Anodic Alumina Films ,” Nature Materials, 8, pp.415-420, 2009.
    [18] S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Controlling Factor of Self Ordering of Anodic Porous Alumina ,” J. Electchem. Soc., 151, pp. B473-B478, 2004.
    [19] S. Ono, M. Saito, M. Ishiguro, and H. Asoh, “Self-Ordering of Anodic Porous Alumina Induced vy Local Current Concentration: Burning ,” Electrochem. Solid State Lett., 7, pp. B21-B24, 2004.
    [20] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater., 13, pp. 189-192, 2001.
    [21] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett., 71, pp. 2770-2772, 1997.
    [22] C. Y. Liu, A. Datta and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam-Prepatterned Aluminum Surfaces,” Appl. Phys. Lett., 78, pp.120-122, 2001.
    [23] H. Asoh, S. Ono, T. Hirose, M. Nakao, and H. Masuda, “Growth of Anodic Porous Alumina with Square Cells,” Electrochim. Acta, 48, pp.3171-3174, 2003.
    [24] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, “Self Ordering Regimes of Porous Alumina: The 10% Porosity Rule ,” Nano Lett., 7, pp. 677-680, 2002.
    [25] Nanomaterials.it Srl Company, Geometrical Considerations about Porous Anodic Alumina, San Giuliano Milanese, Italy, 2009
    [26] N. V. Myung, J. Kim, J. P. Fleurial, M. Yun, W. West, and D. Choi, “Alumina Nanotemplate Fabrication on Silicon Substrate,” Nanotechnology, 15, pp. 833-838, 2004.
    [27] H. Shiraki, Y. Kimura, H. Ishii, S. Ono, K. Itaya, and M. Niwano, “Investigation of Formation Processes of An Anodic Porous Alumina Film on Silicon Substrate ,” Appl. Surf. Sci., 237, pp. 369-373, 2004.
    [28] A. Cai, H. Zhang, H. Hua, and Z. Zhang, “Direct Formation of Self-Assembled Nanoporous Aluminium Oxide on SiO2 and Si Substrate,” Nanotechnology, 13, pp. 627-630, 2002.
    [29] B. Yan, H. T. M. Pham, Y. Ma, Y. Zhuang, and P. M. Sarro, “Fabrication of in Situ Ultrathin Anodic Aluminum Oxide Layers for Nanostructuring on Silicon Substrate,” Appl. Phys. Lett., 91, 053117, 2007.
    [30] M. T. Wu, I. C. Leu, and M. H. Hon, “Anodization Behavior of Al Film on Si Substrate with Different Interlayers for Preparing Si-Based Nanoporous Alumina Template,” J. Mater. Res., 19, pp. 888-895, 2004.
    [31] O. Rabin, P. R. Herz, Y. M. Lin, A. I. Akinwande, S. B. Cronin, and M. S. Dresslhaus, “Formation of Thick Porous Anodic Alumina film and Nanowire Arrays on Silicon Wafers and Glass,” Adv. Funct. Mater., 13, pp. 631-638, 2003
    [32] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Two-Dimensional Nanowire Array Formation on Si Substrate Using Self-Organized Nanoholes of Anodically Oxidized Aluminum ,” Solid-State Electron., 43, pp. 1143-1146, 1999.
    [33] T. S. Kustandi, W. W. Loh, H. Gao. and H. Y. Low, “Wafer-Scale Near-Perfect Ordered Porous Alumina on Substrates by Step and Flash Imprint Lithography,” ACS Nano, 5, pp. 2561-2568, 2010
    [34] M. A. S. Chong, Y. B. Zheng, H. Gao, and L. K. Tan, “Combinational Template-Assisted Fabrication of Hierarchically Ordered Nanowire Arrays on Substrates for Devices Application,” Appl. Phys. Lett., 89, 233104, 2006.
    [35] F. Zacharatos, V. Gianneta and A. G Nassiopoulou, “Highly Ordered Hexagonally Arranged Nanostructures on Silicon Through A Self-Assembled Silicon-Integrated Porous Anodic Alumina Masking Layer,” Nanotechnology, 19, 495306, 2008.
    [36] G. P. Sklar, K. Paramguru, M. Misra, and J. C. LaCombe, “Pulsed Electrodeposition into AAO templates for CVD Growth of Carbon Nanotube Arrays,” Nanotechnology, 16, pp. 1265-1271, 2005.
    [37] W.H. Kim, S.J. Park, J.Y. Son, and H. Kim, “Ru Nanostructure Fabrication Using an Anodic Aluminum Oxide Nanotemplate and Highly Conformal Ru Atomic Layer Deposition,” Nanotechnology, 19, 045302, 2008.

    [38] N. V. Quy, N. D. Hoa, W. J. Yu, Y. S.Cho, G. S. Choi, and D. Kim, “The Use of Anodic Aluminum Oxide Templates for Triode Type Carbon Nanotube Field Emission Structure Toward Mass Production Technology,” Nanotechnology, 17, pp. 2156-2160, 2006
    [39] Y. Xiang, A. Keilbach, L. M. Codinachs, K. Nielsch, G. Abstreiter, A. F. I Morral , and T. Bein, “Multiple Nanowire Species Synthesized on A Single Chip by Selectively Addressable Horizontal Nanochannels,” Nano Lett., 10, pp. 1341-1346, 2010
    [40] M. Kokonou, and A. G. Nassiopoulou, “Nanostructuring Si Surface and Si/SiO2 Interface Using Porous-Alumina on Si Template Technology Electrical Characterization of Si/SiO2 Interface,” Phys. E, 38, pp. 1-5, 2007.
    [41] S. H. Jung, S. H. Jeong, S. U. Kim, S. K. Hwang, P. S. Lee, K. H. Lee, J. H. Ko, E. Bae, D. Kang, W. Park, H. Oh, J. J. Kim, H. Kim, and C. G. Park, “Vertically Aligned Carbon Nanotube Arrays Showing Schottky Behavior at Romm Temperature,” Small, 1, pp. 553-559, 2005.
    [42] J. Drexler, and C. Steinem, “Pore Suspending Lipid Bilayers on Porous Alumina Investigated by Electrical Impedance Spectroscopy ,” J. Phys. Chem. B, 107, pp. 11245-11254, 2003.
    [43] D. A. Brevnov, G. V. R. Rao, G. P. Lopez, and P. B. Atanassov, “Dynamics and Temperature Dependence of Etching Processes of Porous and Barrier Aluminum Oxide Layer ,” Electrochim. Acta., 49, pp. 2487-2494, 2004.
    [44] X. D. Dang, W. Plieth, S. Richter, M. Plotner, and W. J. Fischer, “Aluminum Oxide Film as Gate Dielectric for Organic FETs: Anodization and Characterization ,” Phys. Stat. Sol. a, 205, pp. 626-632, 2008.
    [45] X. H. Zhao, Y. Zuo, J. M. Xiong, and Y. M. Tang, “A Study on the Self Sealing Process of Anodic Films on Aluminum by EIS,” Surf. Coat. Technol., 200, pp. 6846-6853, 2006.
    [46] V. Gianneta, A. G. Nassiopoulou, C. A. Krontiras, and S. N. Georga, “Porous Anodic Alumina Thin Films on Si: Intreface Characterization ,” Phys. Stat. Sol. c, 5, pp. 3686-3689, 2008.
    [47] S. Kato, S. Nigo, Y. Uno, T. Onsisi, and G. Kido, “Voltage Induced Insulator Metal Transition at Room Temperature in an Porous Alumina Thin Film ,” J. Phys., 38, pp. 148-151, 2006.
    [48] K. B. Shelimov, D. N. Davydov, and M. Moskovits, “Templates Grown High Density Nanocapacitor Arrays ,” Appl. Phys. Lett., 77, pp. 1722-1724, 2000
    [49] Y. Choi, D. Choi and Luke P. Lee, “Metal-Insulator-Metal Optical Nanoantenna with Equivalent-Circuit Analysis ,” Adv. Mater., 22, pp. 1-5, 2010
    [50] P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee and G. W. Rubloff, “Nanotubular Metal-Insulator-Metal Capacitor Arrays for Energy Storage ,” Nat. Nanotechnol., 4, pp. 292-296, 2009
    [51] D. Ding, and Z. Chen, “A Pyrolytic Carbon-Stabilized, Nanoporous Pd Film for Wide-Range H2 Sensing,” Adv. Mater., 19, pp. 1996-1999, 2007.
    [52] N.D. Hoa, N.V. Quy, Y. Cho, and D. Kim, “An Ammonia Gas Sensor Based on Non-catalytically Synthesized Carbon Nanotubes on an Anodic Aluninum Oxide Template,” Sens. Actuators B, 127,pp. 447-454, 2007.
    [53] V. T. Horvath, L. Juhasz, A. V. Varnai, and G. Perlaky, “Usage of Porous Al2O3 Layers for RH Sensing,” Microsyst. Technol., 2007.
    [54] F. Rumiche, H. H. Wang, J. E. Indacochea, and M. L. Wang, “Anodic Aluminum Oxide(AAO) Based Nanowells for Hydrogen Detection,” Proc. SPIE, 693230, 2008.
    [55] G. Sberveglieri, R. Murri, and N. Pinto, “Characterization of Porous Al2O3-SiO2/Si Sensor for Low and Medium Humidity Ranges,” Sens. Actuators B, 23, pp. 177-180, 1995.
    [56] G. Gorokh, A. Mozalev, D. Solvei, V. Khatko, E. Llobet, and X. Correig, “Anodic Formation of Low-Aspect-Ratio Porous Alumina Films for Metal-Oxide Sensor Application,” Electrochim. Acta, 52, pp. 1771-1780, 2006.
    [57] L. Yao, M. Zheng, H. Li, L. Ma, and W. Shen, “High-Performance Humidity Sensor Based on High-Field Anodized Porous Alumina Films,” Nanotechnology, 20, 395501, 2009.
    [58] C. J. Yang, S. W. Liang, P. W. Wu, C. Chen, and J. M. Shieh, “Fabrication of Anodic Aluminum Oxide Film on Large-Area Glass Substrate,” Electrochem. Solid State Lett., 10, pp. C69-C71, 2007.
    [59] T. R. B. Foong, A. Sellinger, and X. Hu, “Origin of The Bottlenecks in Preparing Anodized Aluminum Oxide(AAO) Templates on ITO Glass,” ACS Nano, 2, pp. 2250-2256, 2008.
    [60] S. Z. Chu, K. Wada, S. Inoue, and S. Todoroki, “Formation and Microstructure of Anodic Alumina Films form Aluminum Sputtered on Glass Substrate,” J. Electrochem. Soci., 149, pp. B321-B327, 2002.
    [61] J. Xu, J. Xia, and J. Wang , “Quantum Dots Confined in Nanoporous Alumina Membranes,” Appl. Phys. Ltee., 89,133110, 2006.
    [62] A. A. Lutich, S. V. Gaponenko, N. V. Gaponenko, L. S. Molchan, V. A. Sokol, and V. Parkhutik, “Anisotropic Light Scattering in Nanoporous Materials: A Photo Density of States Effect,” Nano Lett., 4, pp. 1755-1758, 2004.
    [63] L. C. Chen, C. K. Wang, J. B. Huang, and L. S. Hong, “A Nanoporous AIN Layer Patterned by Anodic Aluminum Oxide and Its Application as a Buffer Layer in a Ga-N Based Light Emitting Diode,” Nanotechnology, 20, 085303, 2009.
    [64] S. Gavrilov, D. Kravtchenko, A. Zheleznyakova, V. Timoshenko, P. Kashkarov, and V. Melnikov, “Porous Anodic Alumina for Photonics and Optoelectronics,” Proc. SPIE, 5401, pp. 235-241, 2004.
    [65] K. Huang, L. Pu, T. Shi, p. Han, R. Zhang, and Y. D. Zheng, “Photoluminescence Oscillations in Porous Alumina Films,” Appl. Phys. Lett, 89, 201118, 2006.
    [66] Y. B. Li, and M. J. Zheng, “High Speed Growth and Photoluminescence of Porous Anodic Alumina Films with Controllable Interpore Distances Over a Large Range,” Appl. Phys. Lett, 91, 073109, 2007.
    [67] K. H. A. Lau, L.S. Tan, K. Tamada, M. S. Sander, and W. knoll, “Highly Sensitive Detection of Process Occurring Isider Nanoporous Anodic Alumina Templates: A waveguide Optical Study,” J. Phys. Chem. B., 108, pp. 10812-10818, 2004.
    [68] H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M, Nakao, and K. Nishio, “Lasing form Two Dimensional Photonic Crystals Using Anodic Porous Alumina,” Adv. Mater., 18, pp. 213-216, 2006.
    [69] C. Aurelian, E. S. Kooij, H. Wormeester, and C. Salm Masuda, “Structural and Optical Characterization of Porous Anodic Aluminum Oxide,” J. Appl. Phys., 94, pp. 4296-4305, 2003.
    [70] J.Choi, Y. Luo, R. B. Wehrspohn, R. Hillebrand, J. Schilling, and U. Gosele, “Perfect Two Dimensional Porous Alumina Photonic Crystals with Duplex Oxide Layer,” J. Appl. Phys., 94, pp. 4757-4762, 2003.
    [71] T. Maeda, and K. Hiroshima “Vertically Aligned Nematic Liquid Crystal on Anodic Porous Alumina,” J. J. Appl. Phys., 43, pp. L1004-L1006, 2004.
    [72] B. Wang, G. T. Fei, M. Wang, M. G. Kong, and L. D. Zhang, “Preparation of Photonic Crystals Made of Air Pores in Anodic Alumina,” Nanptechnology, 18, 365601, 2007.
    [73] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical Negative Refraction in Bulk Matamaterials of Nanowire,” Science, 321, pp. 930, 2009.
    [74] A. Yamaguchi, K. Hotta, and N. Teramae, “Optical Waveguide Sensor Based on a Porous Anodic Alumina/Aluminum Multilayer Film,” Anal. Chem., 81, pp. 105-11, 2009.
    [75] X. Zhao, G. Meng, Q. Xu, F. Han, and Q. Huang, “Color Fine-Turing of CNTs@AAO Composite Thin Films Via Isotropically Etching Porous AAO Before CNT Growth And Color Modification by Water Infusion,” Adv. Mater., 22, pp. 2637-2641, 2010.
    [76] H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, “Enhanced Coupling of Light From Organic Light Emitting Diodes Using Nanoporous Films,” Appl. Phys. Lett., 96, pp. 1649-1654, 2004.
    [77] T. Hong, T. Chen, G. Z. Ran, J. Wen, Y. Z. Li, T. Dai, and G. G. Qin, “Enhanced Electroluminescence From Nanoscale Silicon p+-n Junctions Made With An Anodic Aluminum Oxide Pattern,” Nanotechnology, 21, 025301, 2010.
    [78] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved Extraction Efficiency of Light-Emitting Diodes by Modifying Surface Roughness With Anodic Aluminum Oxide Film ,” IEEE Photo. Technol. Lett., 20, pp. 428-430, 2008.
    [79] S. Grimm, R. Giesa, K. Sklarek, A. Langner, U. Gosele, H.-W. Schmidt, and M. Steinhart, “Nondestructive Replication of Self-Ordered Nanoporous Alumina Membranes Via Cross-Linked Polyacrylate Nanofiber Array,” Nano Lett., 8, pp. 1954-1959, 2008.
    [80] J. Byun, J. I. Lee, S. Kwon, G. Jeon and J. K. Kim, “Highly Ordered Nanoporous Alumina on Conducting Substrates with Adhesion Enhanced by Surface Modification: Universal Templates for Ultrahigh-Density Arrays of Nanorods ,” Adv. Mater., 22, pp. 1-5, 2010.
    [81] D. Choi, S. Lee, C. Lee, P. Lee, J. Lee, K. Lee, H. Park, and W. Hwang, “Dependence of The Mechanical Properties of Nanohoneycomb Structure on Porosity,” J. Micromech. Microeng., 17, pp.501-508, 2007.
    [82] L. Moreno-Hagelsieb, D. Flandre, and J. P. Raskin, “Mechanical Properties of Anodic Aluminum Oxide for Microelectromechanical System Applications,” J. Vac. Sci. Technol. B, 27, pp.542-546, 2009.
    [83] S. Ko, D. Lee, S. Jee, H. Park, K. Lee, W. Hwang, “Mechanical Properties and Residual Stress in Porous Alumina Structures,” Thin Solid Films, 515, pp.1932-1937, 2006.
    [84] J. H. Jeon, P. S. Lee, K. H. Lee, H. C. Park, and W. Hwang, “Bending Fatigue Characteristics of Nanohoneycomb Structures,” Compos. Struct., 82, pp. 28-35, 2008.
    [85] P. S. Lee, J. Lee, N. Shin, K.H. Lee, D. Lee, S. Jeon, D. Choi, W. Hwang, and H. Park, “Microcantilevers with Nanochannels,” Adv. Mater., 20, pp. 1732-1737, 2008
    [86] D. Choi, S. Kim, S. Lee, D. Kim, K. Lee, H. Park, and W. Hwang, “Structure-Dependent Adhesion and Friction on Highly Ordered Metallic Nanopore Membranes,” Nanotechnology, 19, 145708, 2008
    [87] K. P. Musselman, G. J. Mulholland, A. P. Robinson, L. Schmidt-Mende and J. L. MacManus-Driscoll, “Low-Temperature Synthesis of Large-Area, Free-Standing Nanorod Arrays on ITO/Glass and Other Conducting Substrates,” Adv. Mater., 20, pp. 4470-4475, 2008
    [88] A. S. M. Chong, L. K. Tan, J. Deng and H. Gao, “Soft Imprinting: Creating Highly Ordered Porous Anodic Alumina Template on Substrates for Nanofabrication,” Adv. Mater., 17, pp. 1629-1635, 2007
    [89] Z. Fan, H. Razavi, J. W. Do, A. Moriwaki, O. Ergen, Y. L. Chueh, P. W. Leu, J. C. Ho, T. Takkahashi, L. A. Reichertz, S. Neale, K. Yu, M. Wu, J. W. Ager, and A. Javey, “Three-Dimensional Nanopillar-Array Photovoltaics on Low-Cost And Flexible Substrates,” Nat. Mater., 8, pp. 648-653, 2009
    [90] T. S. Kang, A. P. Smith, B. E. Taylor, and M. F. Durstock, “Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells,” Nano Lett., 9, pp. 601-606, 2009
    [91] C. Huang, and Y. Hao, “The Fabrication of Short Metallic Nanotubes by Templated Electrodeposition,” Nanotechnology, 20, 445607, 2009
    [92] Y. W. Jung, J. S. Byun, D. H. Woo, and Y. D. Kim, “Ellipsometric Analysis of Porous Anodized Aluminum Oxide Films,” Thin Solid Films, 517, pp. 3726-3730, 2009
    [93] A. C. Galca, E. S. Kooij, H. Wormeester, and C. Salm, “Structure and Optical Characterization of Porous Anodic Aluminum Oxide,” J. Appl. Phys., 94, pp. 4296-4305, 2003
    [94] W. L. Xu, H. Chen, M. J. Zheng, G. Q. Ding, and W. Z. Shen, “Optical Transmission Spectra of Ordered Porous Alumina Membranes with Different Thicknesses and Porosities,” Optical Material, 28, pp. 1160-1165, 2006.
    [95] J. Wang, C. W. Wang, Y. Li and W. M. Liu, “Optical Constants of Anodic Aluminum Oxide Films Formed in Oxalic Acid Solution,” Thin Solid Films, 516, pp. 7689-7694, 2008.
    [96] E. S. Kooij, H. Wormeester, A. C. Galca, and B. Poelsema, “Optical Anisotropy and Porosity of Anodic Aluminum Oxide Characterized by Spectroscopic Ellipsometry,” Electrochem. Solid State Lett., 6, pp. B52-B54, 2003
    [97] C. A. Foss, Jr. G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and The Effect of Particle Size and Shape,” J. Phys. Chem., 98, pp. 2963-2971, 1994
    [98] S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H-H Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, and Z. Bao, “Highly Sensitive Flexible Presssure Sensor with Microstructured Rubber Dielectric Layers,” Nat. Mater., 9, pp. 859-864, 2010
    [99] H. K. Lee, S. I. Chang, and E. Yoon, “ A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment,” J. Microelectromech. Syst., 15, pp.1681-1685, 2006
    [101] H. B. Muhammad, C. M. Oddo, L. Beccai, C. Recchiuto, C. J. Anthony, M. J. Adams, M. C. Carrozza, D. W. L. Hukins, and M. C. L. Ward, “Development of A Bioinspired MEMS Based Capacitive Tactile Sensor for A Robotic Finger ,”Sen. Actuators B, 165, pp.221-229, 2011.
    [102] E. G. Bakhoum, and M. H.M. Cheng, “Novel Capacitive Pressure Sensor,” IEEE J. Microelet. Syst., 19, pp. 443-450, 2010
    [103] M. Crouse, Y.H. Lo, A. E. Miller, and M. Crouse, “Self-Ordered Pore Structure of Anodized Aluminum on Silicon and Pattern Transfer,” Appl. Phys. Lett., 76, pp. 49-51, 2000
    [104] S. H. Lee, S. H. Park, M. H. Lee, and S. T. Oh, “Homeotropically aligned nematic liquid crystal device locked by a polymer wall with wide viewing angle,” Appl. Phys. Lett., 86, 031108, 2005.
    [105] J. K. Kim, C. J. Choi, J. S. Park, S. J. Jo, B. H. Hwang, M. K. Jo, D. Kang, S. J. Lee, Y. S. Kim, and H. K. Baik, “Orientational transition of liquid crystal molecules by a photoinduced transformation process into a recovery free silicon oxide layer,” Adv. Mater., 20, 3073–3078, 2008.
    [106] T. Maeda, and K. Hiroshima , “Vertically aligned nematic liquid crystal on anodic porous alumina,” J. J. Appl. Phys., 43 L1004-L1006, (2005)
    [107] T. T. Tang, C. Y. Kuo, R. P. Pan, J. M. Shieh, and C. L. Pan , “Strong vertical alignment of liquid crystal on porous anodic aluminum oxide film,” J. Disp. Technol., 5, 350–354, 2009.
    [108] S. Lazarouk, A. Muravski, D. Sasinovich,V. Chigrinov, and H. S. Kwok, “Porous and Pillar Structures Formed by Anodization for Vertical Alignment of Nematic Liquid Crystal ,” J. J. Appl. Phys., 46, pp. 6889-6892, 2007.
    [109] R. P. Foong, A. Sellinger, and X. Hu , “ Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates,” ACS. Nano., 2, pp. 2250-2256, 2008.
    [110] T. J. Scheffer, and J. Nehring, “Accurate determination of liquid crystal tilt bias angles,” J. Appl. Phys., 48, pp. 1783-1792, 1977.
    [111] S. Zhang, B. Wen, S. S. Keast, M. E. Neubert, P. L. Taylor, and C.
    Rosenblatt “Fréedericksz Transition in an Anticlinic Liquid Crystal,” Phys. Rev. Lett., 84, pp. 4140-4143, 2000.
    [112] L. D. Landau, and E. M. Lifshitz,“ Theory of Elasticity,” Butterworth-Heinemann, 7, pp. 42, 1986.
    [113] T. H. Fang, T. H. Wang, C. H. Liu, L. W. Ji, and S. H. Kang, “ Physical Behavior of Nanoporous Anodic Alumina Using Nanoindentation and Microhardness Tests,” Nanoscale Res. Lett, 2, pp. 410-415, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE