研究生: |
李孟憬 Li, Meng-Jing |
---|---|
論文名稱: |
以建構性的方法來進行臨界函數辨識的研究 A Constructive Approach for Threshold Function Identification |
指導教授: |
王俊堯
Wang, Chun-Yao |
口試委員: |
江介宏
Jiang, Jie-Hong 温宏斌 Wen, Hung-Pin |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 27 |
中文關鍵詞: | 臨界邏輯 、臨界值邏輯閘 、臨界函數辨識 |
外文關鍵詞: | Threshold logic, Linear threshold logic gate, Threshold function identification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臨界函數是布林函數的子集,可以被單一臨界邏輯閘呈現的布林函數是臨界函數。在臨界邏輯的研究中,臨界函數的識別方法是一個很基本的工作,它決定一個布林函數是否為臨界函數。在此研究中,我們提出了文獻上第一個很實用的臨界函數之充分必要條件。藉由我們所提出的充分必要條件,我們設計了一個更有效率的臨界函數識別的演算法。根據實驗結果,與最先進的臨界函數識別方法相比,我們所提出的方法在識別所有8輸入臨界函數時節省了93%的時間。此外,通過提出的方法識別的臨界函數所對應臨界邏輯閘,有更多臨界邏輯閘擁有最小的權重和臨界值。
Threshold Function (TF) is a subset of Boolean function that can be represented with a single linear threshold gate (LTG). In the research about threshold logic, the identification of TF is an important task that determines whether a given function is a TF or not. In this paper, we propose the first practical sufficient and necessary condition for a function being a TF in the literature. With the proposed sufficient and necessary condition, we devise a TF identification algorithm. The experimental results show that the proposed approach saves 93% CPU time for identifying all the 8-input NP-class TFs as compared with the state-of-the-art. Furthermore, the LTGs corresponding to the identified TFs obtained by the proposed approach have the minimum weights and threshold value for more TFs than the state-of-the-art.
[1] M. J. Avedillo, J. M. Quintana, H. Pettenghi, P. M. Kelly, and C. J. Thompson, “Multi-threshold Threshold Logic Circuit Design Using Resonant Tunnelling Devices,” Electron. Lett., vol. 39, no. 21, pp. 1502–1504, Oct. 2003.
[2] Y.-C. Chen, H.-J. Chang, and L.-C. Zheng, “Don’t-Care-Based Node Minimization for Threshold Logic Networks,” in Proc. DAC, 2020.
[3] D. Goldharber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen, “Overview of Nanoelectronic Devices,” in Proc. IEEE, vol. 85, no. 4, pp. 521–540, Apr. 1997.
[4] W.-C. Hsu, C.-C. Lin, Y.-T. Li, Y.-C. Chen and C.-Y. Wang, “On Reduction of Computations for Threshold Function Identification,” in Proc. SOCC, 2021, pp. 146-151.
[5] P.-Y. Kuo, C.-Y. Wang and C.-Y. Huang, “On Rewiring and Simplification for Canonicity in Threshold Logic Circuits,” in Proc. ICCAD, 2011, pp. 396-403.
[6] Y.-A. Lai, C.-C. Lin, C.-C. Wu, Y.-C. Chen, and C.-Y. Wang, “Efficient Synthesis of Approximate Threshold Logic Circuits with an Error Rate Guarantee,” in Proc. DATE, 2018, pp. 773–778.
[7] S.-Y. Lee, N.-Z. Lee, and J.-H. R. Jiang, “Canonicalization of Threshold Logic Representation and Its Applications,” in Proc. ICCAD, 2018, pp. 1-8.
[8] C.-H. Liu, C.-C. Lin, Y.-C. Chen, C.-C. Wu, C.-Y. Wang, and S. Yamashita, “Threshold Function Identification by Redundancy Removal and Comprehensive Weight Assignments,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 12, pp. 2284–2297, Dec. 2019.
[9] C.-C. Lin, C.-W. Huang, C.-Y.Wang, and Y.-C. Chen, “In&Out: Restructuring for threshold logic network optimization,” in Proc. ISQED, 2017, pp. 413-418.
[10] C.-C. Lin, C.-H. Liu, Y.-C. Chen, and C.-Y. Wang, “A New Necessary Condition for Threshold Function Identification,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 12, pp. 5304-5308, Dec. 2020.
[11] C.-C. Lin, C.-S. Lin, Y.-H. Tsai, Y.-C. Chen, and C.-Y. Wang, “Don’t Care Computation and De Morgan Transformation for Threshold Logic Network Optimization,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 5, pp. 1412-1422, May 2022.
[12] C.-C. Lin, C.-Y. Wang, Y.-C. Chen, and C.-Y. Huang, “Rewiring for Threshold Logic Circuit Minimization,” in Proc. DATE, 2014, pp. 1–6.
[13] S. Muroga, I. Toda, and M. Kondo. “Majority Decision Functions of up to Six Variables.” Mathematics of Computation, vol. 16, no. 80, pp. 459-472, 1962.
[14] S. Muroga, T. Tsuboi, and C. R. Baugh, “Enumeration of Threshold Functions of Eight Variables,” IEEE Trans. on Computers, vol. C-19, no. 9, pp. 818-825, Sep. 1970.
[15] S. Muroga, Threshold Logic and its Applications. New York, NY, USA: Wiley, 1971.
[16] A. Neutzling, M. G. A. Martins, V. Callegaro, A. I. Reis, and R. P. Ribas, “A Simple and Effective Heuristic Method for Threshold Logic Identification,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 5, pp. 1023–1036, May 2018.
[17] V. A. Mardiris, G. C. Sirakoulis, and I. G. Karafyllidis, “Automated Design Architecture for 1-D Cellular Automata Using Quantum Cellular Automata,” IEEE Trans. Comput., vol. 64, no. 9, pp. 2476–2489, Sep. 2015.
[18] G. Papandroulidakis, A. Serb, A. khiat, G. Merreet, and T. Prodromakis, “Practical Implementation of Memristor-Based Threshold Logic Gates,” IEEE Trans. on Circuits and Systems, vol. 66, no. 8, pp. 3041-3051, 2019.
[19] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, “Energy-Delay Performance of Nanoscale Transistors Exhibiting Single Electron Behavior and Associated Logic Circuits,” J. Low Power Electron., vol. 6, no. 3, pp. 415–428, 2010.
[20] C.-K. Tsai, C.-Y. Wang, C.-Y. Huang and Y.-C. Chen, “Sensitization Criterion for Threshold Logic Circuits and its Application,” in Proc. ICCAD, 2013, pp. 226-233.
[21] R. O. Winder, “Single stage threshold logic,” in Proc. Switch. Circuit Theory Logical Design, 1961, pp. 321–332.
[22] R. O. Winder, “Enumeration of Seven-Argument Threshold Functions,” in IEEE Transactions on Electronic Computers, vol. EC-14, no. 3, pp. 315-325, June 1965.
[23] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold Network Synthesis and Optimization and Its Application to Nanotechnologies,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 107–118, Jan. 2005.