簡易檢索 / 詳目顯示

研究生: 林政勳
論文名稱: 在完備準度量空間上循環弱梅厄-基勒φ-收縮映射之定點定理
指導教授: 陳正忠
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 14
中文關鍵詞: 度量空間收縮函數定點定理梅厄-基勒循環
外文關鍵詞: metric-like spaces, contractive mapping, Fixed point theory, Meir-Keeler, cyclic
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,我們利用Meir-Keeler函數,可允許函數,循涵函數等概念,去介紹一新的循環弱Meir-Keeler可允許函數,並在此新函數上探討定點定理。


    Fixed point theory for the cyclic weaker Meir-Keeler
    φ-contractive mapping on complete metric-like spaces

    目錄 Abrstract………………………………………………1 1.Introduction and Preliminaries……………2 2.Main results……………………………………6 3.References…………………………………………13

    References:
    [1] Amini-Harandi, A: Metric-like spaces, partial metric spaces and fixed points. Fixed Point Theory Appl. 2012, 204 (2012)
    [2] Aage, CT, Salunke, JN: The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci.2(59), 2941-2948 (2008)
    [3] Aage, CT, Salunke, JN: Some results of fixed point theorem in dislocated quasi-metric spaces. Bull. Marathwada Math. Soc. 9, 1-5 (2008)
    [4] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for contractive
    type mappings, Nonlinear Analysis, 75 (2012) 2154-2165.
    [5] Chen, CM: Fixed point theorems for cyclic Meir-Keeler type mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 41 (2012)
    [6] Daheriya, RD, Jain, R, Ughade, M: Some fixed point theorem for expansive type mapping in dislocated metric space, ISRN Math, Anal. 2012, Article ID 376832 (2012)
    [7] Eldered, AA, Veeramani, P: Convergence and existence for best proximity points. J. Math. Anal. Appl. 323, 1001-1006 (2006)
    [8] Eldered, AA, Veeramani, P: Proximal pointwise contraction. Topol. Appl. 156, 2942-2948 (2009)
    [9] Hitzler, P: Generalized metrics and topology in logic programming semantics. PhD thesis, School of Mathematics, Applied Mathematics and Statistics, National University Ireland, University College Cork (2001)
    [10] Hitzler, P, Seda, AK: Dislocated topologies. J. Electr. Eng. 51(12), 3-7 (2000)
    [11] Kirk, WA, Srinavasan, PS, Veeramani, P: Fixed points for mapping satisfying cyclical contractive conditions. Fixed Point Theory 4, 79-89 (2003) [7] Sarma, IR, Kumari, PS: On dislocated metric spaces. Int. J. Math. Arch. 3(1), 72-77 (2012)
    [12] Karapınar, E: Fixed point theory for cyclic weak contraction. Appl. Math. Lett. 24, 822-825 (2011)
    [13] Karapınar, E, Erhan, IM, Ulus, AY: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 6(1), 239-244 (2012)
    [14] Karapınar, E, Sadarangani, K: Fixed point theory for cyclic ( ) contractions. Fixed Point Theory Appl. 2011, 69 (2011)
    [15] Karpagam, S, Agrawal, S: Best proximity points theorems for cyclic Meir-Keeler contraction maps. Nonlinear Anal. 74, 1040-1046 (2011)
    [16] Karpagam, S, Agrawal, S: Existence of best proximity points of p-cyclic contractions. Fixed Point Theory 13(1), 99-105 (2012)
    [17] Matthews S. G., Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197.
    [18] Meir, A, Keeler, E, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, pp. 326–329, 1969
    [19] Mongkolkeha, C, Kumam, P: Best proximity point theorems for generalized cyclic contractions in ordered metric spaces. J. Optim. Theory Appl. (2012). doi:10.1007/s10957-012-9991-y

    [20] Nashine, HK, Sintunavarat, W, Kumam, P: Cyclic generalized contractions and fixed point results with applications to integral equation. Fixed Point Theory Appl. 2012, 217 (2012)
    [21] P˘acurar, M, Rus, IA: Fixed point theory for cyclic ϕ-contractions. Nonlinear Anal. 72(3-4), 1181-1187 (2010)
    [22] Petru,sel, G: Cyclic representations and periodic points. Stud. Univ. Babe,s-Bolyai, Math. 50, 107-112 (2005)
    [23] Rezapour, S, Derafshpour,M, Shahzad, N: Best proximity point of cyclic ϕ-contractions in ordered metric spaces. Topol. Methods Nonlinear Anal. 37, 193-202 (2011)
    [24] Rus, IA: Cyclic representations and fixed points. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 3, 171-178 (2005) [9] Zeyada, FM, Hassan, GH, Ahmed, MA: A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. Arab. J. Sci. Eng., Sect. A 31(1), 111-114 (2005)
    [25] Shrivastava, R, Ansari, ZK, Sharma, M: Some results on fixed points in dislocated and dislocated quasi-metric spaces. J. Adv. Stud. Topol. 3(1), 25-31 (2012)
    [26] Sintunavarat, W, Kumam, P: Common fixed point theorem for cyclic generalized multi-valued contraction mappings. Appl. Math. Lett. 25(11), 1849-1855 (2012)
    [27] Zoto, K, Hoxha, E, Isufati, A: Some new results in dislocated and dislocated quasi-metric spaces. Appl. Math. Sci. 6(71), 3519-3526 (2012)
    [28] Zoto, K, Hoxha, E: Fixed point theorems for ψ-contractive type mappings in dislocated quasi-metric spaces. Int. Math. Forum 7(51), 2503-2508 (2012)
    [29] Zoto, K, Hoxha, E: Fixed point theorems in dislocated and dislocated quasi-metric spaces. J. Adv. Stud. Topol. 3(4), 119-124 (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE