研究生: |
李建成 Chien Chen Lee |
---|---|
論文名稱: |
錫銀銅覆晶微接點暨鋁導線外加機械應力之電遷移研究 Investigation of Electromigration Characteristic in SnAg3.0Cu0.5 Flip Chip Interconnection and the External Mechanical Stress Impact of Al Thin Film |
指導教授: |
江國寧
Kuo Ning Chiang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 143 |
中文關鍵詞: | 電致遷移 、電流擁擠 、焦耳熱 、平均失效時間 、金屬界層 、錫銀銅無鉛凸塊 、Polarity效應 、Tilting效應 、外加機械應力 、四點彎折 |
外文關鍵詞: | Electromigration, Current crowding, Joule heating, Mean-time-to-failure, Intermetallic compound, Polarity effect, Tilting effect, Blech strip, External mechanical stress |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積體電路的鋁導線中所施加電流密度若高於105 A/cm2時,將在陰極產生孔洞而在陽極產生凸起,此電致遷移現象導致導線損壞為常見的破壞模式。當現今覆晶封裝微接點的尺寸到達35 μm時,其電流密度將達到104 A/cm2,在此電流密度下,電致遷移將會造成覆晶封裝微接點的損壞。因此在覆晶封裝微接點中,由於電致遷移所產生的各種行為及效應值得深入探討。
本研究首先討論在高電流密度運作下,錫銀銅無鉛凸塊的電致遷移行為,來進行平均失效時間預估的探討,研究中也應用了有限元素法來分析因為電流擁擠所產生的最大電流密度所發生的位置,以及微接點的電流密度分布。在電致遷移所產生的孔洞擴散現象方面,除了文獻中所提出的薄餅狀孔洞現象,本研究也觀察到另一種因電致遷移行為所產生的棉花狀孔洞,此棉花狀孔洞是由於在施加電流之前、或是在施加電流的同時,於陰極/晶片端已經有微小裂縫存在所導致。且由棉花狀孔洞所造成的損壞時,其於陽極/基板端的金屬界層厚度,大於由薄餅狀孔洞所產生的厚度。在電致遷移所產生的介面反應現象方面,除了文獻中所提出的Polarity效應,本研究也觀察到在較高電流密度下才較易觀察得到的Tilting效應,此效應顯示,只有在陽極/晶片端會觀察到金屬界層會延著電流流動的路徑形成。此一現象與本研究中有限元素分析所得到結果一致。
在外加機械應力對鋁導線的影響之研究中,本研究設計並製造了沒有保護層的Blech strip以及相關治具來討論外加機械應力對鋁導線電致遷移的影響。在試件實驗條件達到平衡後,陰極端的鋁原子濃度會由原始的約74%降低至約60%,而陽極端的鋁原子濃度會由原始的約74%增加至約85%。本研究亦提出當外加-50 MPa至+50 Mpa拉伸應力下,此外加機械應力對鋁導線電致遷移的影響,屬於微小但仍可以被觀察到程度。
Electromigration damage was examined under a current density magnitude higher than 105 A/cm2, which led to the void in the cathode and the hillock in the anode and consequently, the failure of the aluminum conductor. Electromigration has also become one of the failure mechanisms when the flip chip solder joint interconnects shrink to 35 μm, in which the current density magnitude will increase up to 104 A/cm2. With these, the reactions and effects of flip chip solder joint electromigration have become to be of great interest.
Thus, this study investigates the electromigration of SnAg3.0Cu0.5 flip chip bumps by adopting Black’s equation to investigate the mean-time-to-failure prediction. Maximum current density was simulated using the finite element method, thereby providing a better understanding of local heat as well as current crowding. The current crowding phenomenon enhances the void formation at the entry points of the cathode side of the solder bumps. In the aspect of electromigration-induced void phenomenon, in addition to the pancake-type void failure mode proposed in the literature, a cotton-type void failure mode was also found in this study. Cross-sectional scanning electro microscopy images showed that the cotton-type void formation may due to the bump with a crack in the cathode/chip side before or during the current stressing. The cotton-type void failure mode intermetallic compounds layer at the anode/substrate side was thicker than that of the pancake-type void failure mode. In the aspect of electromigration effects on interfacial reaction, in addition to the polarity effect proposed in the literature, a more obvious tilting effect was found at the anode/chip side along the electron flow path under a higher current stressing condition.
The unpassivated aluminum thin film test specimens and the four-point-bend equipment have been successfully fabricated to investigate external mechanical stress impact during the electromigration test. This study also found that once the thin films reach equilibrium after the electromigration test, the aluminum atomic concentration, originally at 74%, decreases to about 60% at the cathode and increases up to about 80% at the anode. In addition, this study revealed that applying external mechanical stress has a small but finite effect on critical length. Under the external mechanical stress range of –50 to +50 MPa tensile stress, the higher the tensile stress applied, the shorter the critical length becomes.
REFERENCE
1. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineers and Materials Scientists, Macmilian, New York, pp. 355-368, 1992.
2. C. Y. Chang, and S. M. Sze, ULSI Technology, McGraw-Hill, New York, pp. 663-673, 1996.
3. A. Christuo, Electromigration and Electronic Device Degradation, John Wiley & Sons, New York, pp. 167-233, 1994.
4. M. Ohring, Reliability and Failure of Electronic Materials and Devices, Academic Press, San Diego, pp. 259-284, 1998.
5. M. Ohring, Materials Science of Thin Film, Academic Press, San Diego, pp. 697-703, 2002.
6. D. K. Schroder, Semiconductor Material And Devices Characterization, John Wiley & Sons, Hoboken, pp. 177-182, 2005.
7. V.B. Fiks, “On the Mechanism of the Mobility of Ions in Metals”, Sov. Phys.- Solid State, a, pp. 14-28, 1959.
8. H. B. Huntington and A.R. Grone, “Current-Induced Marker Motion in Gold Wires”, J. Phys. Chem. Solids, 20, pp. 76-87, 1961.
9. J. R. Black, “Mass Transport of an Aluminum by Momentum Exchange with Conducting Electrons”, IEEE/IRPS International Reliability Physics Symposium, The 6th Annual Proceeding, April, pp. 148-159, 1967.
10. J. R. Black, “Electromigration Failure Model in Aluminum Metallization for Semiconductor Devices”, Proc. IEEE, 57, pp. 1587-1594,1969.
11. P. B. Ghate, “Electromigration-Induced Failures in VLSI Interconnects”, IRPS, pp. 292-299, 1982.
12. F. Fantini, J. R. Lloyd, I. D. Munari, and A. Scorzoni, “Electromigration Testing of Integrated Circuit Interconnections”, Microelectronic Eng., 40, pp. 207-221, 1998
13. I. A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride”, J. Appl. Phys, Vol. 47, Feb., pp.1203-1208, 1976.
14. I. A. Blench, “Copper Electromigration in Aluminum,” J. Appl. Phys., Vol. 48, No. 2, pp. 473-477, 1977.
15. I. A. Blech, “Diffusional back flows during electromigration”, Acta mater., 46(11), pp.3717-3723, 1998.
16. P. C. Wang, G. S. Cargill, I. C. Noyan, and C. K. Hu, “Electromigrationinduced stress in aluminum conductor lines measured by x-ray microdi.raction”, Appl. Phys. Lett., 72, pp.1296-1298, 1998.
17. R. Rosenberg and M. Ohring, “Void Formation and Growth During Electromigration in Thin Film”, J. Appl. Phys., Vol. 42, pp. 5671-5679, 1971.
18. M. Shatzkes and J. R. Lloyd, “A Model for Conductor Failure Considering Diffusion Concurrently with Electromigration Resulting in a Current Exponent of 2”, J. Appl. Phys., Vol. 59, pp. 3890-3893, 1986.
19. J. J. Clement and J. R. Lloyd, “Numerical Investigations of the Electromigration Boundary Value Problem”, J. Appl. Phys., Vol. 71, pp. 1729-1730, 1992.
20. R. Kirchheim, “Stress and Electromigration in Al-lines of Integrated Circuits”, Acta Mater., Vol. 40, pp. 309-323, 1992.
21. M. A. Korhonen, P. Borgesen, K. N. Tu, and C. Y. Li, “Stress Evolution Due to Electromigration in Confined Metal Lines”, J. Appl. Phys., Vol. 73, pp. 3790-3799, 1993.
22. A. S. Oates, “Current Density Dependence of Electromigration Failure of Submicron Width, Multilayer Aluminum Alloy Conductors”, Appl. Phys. Lett., Vol. 61, pp. 1475-1477, 1995.
23. D. G. Pierce and P. G. Brusius, “Electromigration: A Review”, Micro. Reliab. Vol. 37, No. 7, pp. 1053-1072, 1997.
24. C. K. Hu and J. M. E. Harper, “Copper Interconnections and Reliability”, Materials Chemistry and Physics, Vol. 52, pp. 5-16, 1998.
25. K. N. Tu, C. C. Yeh, C. Y. Liu, and C. Chen, “Effect of Current Crowding on Vacancy diffusion and Void Formation in Electromigration,” Appl. Phys. Lett., Vol. 76, No. 8, pp. 988-990, 2000.
26. W. C. Liu, S. W. Chen, and C. M. Chen, “The Al/Ni Interfacial Reactions Under the Influence of Electric Current”, J. Electron. Mater., Vol. 27, No. 1, pp. L5-L9, 1998.
27. M. Y. Du, C. M. Chen, and S. W. Chen, “Effects Upon Interfacial Reactions by Electric Current of Reversing Directions”, Mater. Chem. Phys., Vol. 82, pp. 818-825, 2003.
28. L. C. Shiau, C.E. Ho, and C. R. Kao, “Reactions Between SnAgCu lead-free Solders and the Au/Ni surface finish in advanced electronic packages”, Soldering and Surface Mount Technology, 14, pp. 25-30, 2002.
29. W.T. Chen, C.E. Ho, and C. R. Kao, “Effects of Cu Concentration on the Interfacial Reactions Between Ni and Sn-Cu Solder”, J. Mater. Res., Vol. 17, pp. 263-266, 2002.
30. C. M. Tsai, Y. L. Lin, J. Y. Tsai, Y. S. Lai, and C. R. Kao, “Local Melting Induced by Electromigration in Flip-Chip Solder Joints”, J. Electron. Mater., Vol. 35, pp. 1005-1009, 2006.
31. Y. L. Lin, C. W. Chang, C. M. Tsai, C. W. Lee, and C. R. Kao, “Electromigration-induced UBM Consumption and the Resulting Failure Mechanisms in Flip Chip Solder Joints”, J. Electron. Mater., Vol. 35, pp. 1010-1016, 2006.
32. I. A. Blech, “Electromigration in Thin Aluminum Films”, J. Appl. Phys, Vol. 40, No. 2, pp.485-491, 1968.
33. H. Kahn, and C. V. Thompson, “Effect of applied mechanical stress on the electromigration failure times of aluminum interconnects”, Appl. Phys. Lett., Vol. 59, pp. 1308-1310, 1991.
34. J. R. Lloyd, “Electromigration in thin film conductors”, Semicond. Sci. Techni., Vol. 12, pp. 1177-1185, 1997.
35. Evertt C. C. Yeh, and K. N. Tu, “Effects of contact resistance and film thickness on current crowding and the critical product of electromigration in Blech structure”, J. Appl. Phys., Vol. 89, pp. 3203-3208, 2001.
36. R. Frankovic, and G. H. Berstein, “Electromigration Drift and Threshold in Cu thin-film interconnects”, IEEE Electron Devices., Vol. 43, pp. 2233-2239, 1996.
37. P. C. Wang, and R. G. Filippi, “Electromigrationinduced threshold in copper interconnects”, Appl. Phys. Lett., 78, pp.3598-3600, 2001.
38. X. Lu, K. D. Lee, S. Yoon, H. Matsuhashi, M. Lu, K.Zhang, and P. S. Ho, “Electromigration study of Cu dual-damascene interconnects with a CVD MSQ low k dielectric”, Mater. Res. Soc. Symp. Proc., Vol. 766, pp. E1.9.1-E1.9.6, 1993.
39. D. Ney, X. Federspiel, V. Girault, O. Thomas, and P. Gergaud, “Stress-induced electromigration back flow effect in copper interconnects,” Trans. Device Mater. Rel., Vol. 6, No. 2, pp. 175-180, 2006.
40. H. C. Yu, S. H. Liu, and C. Chen, “Study of electromigration in thin tib film using edge displacement method,” J. Appl. Phys., Vol. 98, 0135403, 2005.
41. Y. T. Yeh, C. K. Chou, Y. C. Hsu, C. Chen and K. N. Tu, “Threshold Current Density of Electromigration in Eutectic SnPb Solder,” Appl. Phys. Lett., Vol. 86, 203504, 2005.
42. Y. C. Hsu, C. K. Chou, P. C. Liu, C. Chen, D. J. Yao, T. Chou, and K. N. Tu, “Electromigration in Pb-Free SnAg3.8Cu0.7 Solder Strips,” J. Appl. Phys., Vol. 98, 033523, 2005.
43. C. K. Chou, Y. C. Hsu, and C. Chen, “Study of Electromigration in Eutectic SnPb Solder Strips Using the Edge Displacement Method,” J. Electron. Mater., 46, 3717, 2006.
44. C. C. Wei, and C. Chen, “Critical length in eutectic SnPb solder,” Appl. Phys. Lett., Vol. 88, 182105, 2006.
45. M. S. Yoon, S. B. Lee, O. H. Kim, Y. B. Park, and Y. C. Joo, “Relationship Between Edge Drift and Atomic Migration During Electromigration of Eutectic SnPb Lines,” J. Appl. Phys., Vol. 100, 033715, 2006.
46. R. Agarwal, S. E. Ou, and K. N. Tu, “Electromigration and Critical Product in Ectectic SnPb Solder Lines at 100 °C” J. Appl. Phys., Vol. 100, 024909, 2006.
47. Brandenburg, Scott, et al, “Electromigration Studies of Flip Chip Solder Joints”, Proceeding Surface Mount International, San Jose, CA, Sep. 1998.
48. T. Y. Lee, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints,” J. Appl. Phys., Vol. 89, No. 6, pp. 3189-3194, 2001.
49. K. Nakagawa, S. Baba, M. Watanabe, H. Matsushima, K. Harada, E. Hayashi, Q. Wu, A. Maeda, M. Nakanishi, and N. Ueda, “Thermo-Electromigration Phenomenon of Solder Bump, Leading to Flip-Chip Devices with 5,000 Bumps”, Electronic Components and Technology Conference, Orlando, FL, US, June, pp. 971-977, 2001.
50. W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Electromigration of Flip Chip Solder Bump on Cu/Ni (V)/Al Thin Film Under Bump Metallization”, IEEE Electronic Components and Technology Conference, San Diego, CA, US, May, pp. 1201-1205, 2002.
51. H. Ye, C. Basaran, and D. Hopkins, “Thermomigration in Pb-Sn Solder Joints under Joule Heating During Electric Current Stressing,” Appl. Phys. Lett., Vol. 82, No. 7, pp. 1045-1047, 2003.
52. H. Gan, G. Xu, and K. N. Tu, “Unique Phase Change Induced by lectromigration (EM) in Solder Joints,” Proc 53th Electronic Components and Technology Conf, New Orleans, Louisiana, May, pp. 71-76, 2003.
53. K. N. Tu, “Recent advances on electromigration in very-large-scale-integration of interconnects,” J. Appl. Phys., Vol. 94, No. 9, pp. 5451-5473, 2003.
54. T. Y. Lee, and K. N. Tu, “Electromigration of Ectectic SnPb and SnAg3.8Cu0.7 Flip Chip Solder Bumps and Under-Bump Metallization,” J. Appl. Phys., Vol. 90, No. 9, pp. 4502-4508, 2001.
55. T. L. Shao, Y. H. Chen, S. H. Chiu, and C. Chen, “Electromigration failure mechanisms for SnAg3.5 solder bumps on Ti/Cr-Cu/Cu and Ni(P)-Au metallization pads,” J. Appl. Phys., Vol. 96, No. 8, pp. 4518-4524, 2004.
56. J. D. Wu, C. W. Lee, P. J. Zheng, Jeffrey C.B. Lee, and Simon Li, “Electromigration Reliability of SnAgxCuy Flip Chip Interconnects,” Proc 54th Electronic Components and Technology Conf, Las Vegas, Nevada, June, pp. 961-967, 2006.
57. J. W. Nah, J. H. Kim, H. M. Lee, and K. W. Paik, “Electromigration in Flip Chip Solder Bump of 97Pb-3Sn/37Pb-63Sn combination structure,” Acta Materiala, Vol. 52, pp. 129-136, 2004.
58. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints,” J. Appl. Phys., Vol. 94, No. 12, pp. 7560-7566, 2003.
59. J. D. Wu, P. J. Zheng, C. W. Lee, S. C. Hung, and J. J. Lee, “A Study in Flip-Chip UBM/Bump Reliability with Effects of SnPb Solder Composition,” Micro. Reliab. 46, pp. 41-52, 2006.
60. K. M. Chen, J. D. Wu and K. N. Chiang, “Effects of Pre-Bump and Bumping Processes on Ectectic Solder Bump Electromigration”, Micro. Reliab. 46, pp. 2104-2111, 2006.
61. J. K. Lin, J. W. Jang and J. White, “Characterization of Solder Joint Electromigration for Flip Chip Technology,” Proc 53th Electronic Components and Technology Conf, New Orleans, Louisiana, May, pp. 816-821, 2003.
62. W. Yiping, Z. Jinsong, W. Fengshun, A. Bing, W. Boyi and W. Lei “Effects of UBM Thickness on Electromigration in Pb-Free Solder Joints,” Proc 54th Electronic Components and Technology Conf, Las Vegas, Nevada, June, pp. 998-1002, 2004.
63. W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu-Ni(V)-Al thin-film under-bump-metallization,” J. Appl. Phys., Vol. 94, No. 9, pp. 5665-5671, 2003.
64. S. Gee, N. Kelkar, J. Huang, and K.N. Tu, “Lead-Free and PbSn Bump Electromigration Testing,” Proc IPACK2005, San Francisco, California, July, 73417, pp. 1-6, 2005.
65. J. W. Nah, F. Ren, and K. N. Tu, “Electromigration in Pb-Free Flip Chip Solder Joints on Flexible Substrate,” J. Appl. Phys., 99, 023520, 2006.
66. Y. Y. Wei, and J. G. Duh, “Effect of thermal ageing on (Sn-Ag, Sn-Ag-Zn)/PtAg, Cu/Al2O3 solder joints,” J. Materials in Electronics, Vol. 9, pp. 373-381, 1998.
67. K. Zeng, and K. N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packaging technology,” Materials Science and Engineering, R 38, pp. 55-105, 2002.
68. Y. C. Hu, Y. H. Lin, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper,” J. Mater. Res., Vol. 18, No. 11, pp. 2544-2548, 2003.
69. T. L. Shao, Y. H. Chen and C. Chen, “Electromigration Failure Mechanism of Sn96.5Ag3.5 Flip-Chip Solder Bumps,” Proc 54th Electronic Components and Technology Conf, Las Vegas, Nevada, June, pp. 979-982, 2004.
70. H. Gan, and K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free,” J. Appl. Phys., Vol. 97, 063514, 2005.
71. H. Ye, C. Basaran, and D. C. Hopkins, “Damage mechanics of Microelectronics Solder Joints Under High Current Densities,” International Journal of Solders and Structures, Vol. 40, pp. 4021-4032, 2003.
72. H. Ye, C. Basaran, and D. C. Hopkins, “Pb Phase coarsening in Eutectic Pb/Sn Flip Chip Solder Joints Under Electric Current Ctressing,” International Journal of Solders and Structures, Vol. 41, pp. 2743-2755, 2004.
73. C. Basaran, H. Ye, D. C. Hopkins, D. Frear and J. K. Lin, “Failure modes of flip chip solder joints under high electric current density,” J. Electronic Packaging, Vol. 127, pp. 157-163, 2005.
74. L. Zhang, S. Ou, J. Huang, K. N. Tu, S. Gee and L. Nguyen, “Effect of current crowding on void propagation at the interface between intermetallic compound and solder in flip chip solder joints,” Appl. Phys. Lett. 88, 012106, 2006.
75. T. Y. Lee, and K. N. Tu, “A Study of Electromigration in 3D Flip Chip Solder Joint Using Numerical Simulation of Heat Flux and Current Density”, Proc 51th Electronic Components and Technology Conf., Orlando, FL, US, June, pp. 558-563, 2001.
76. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius and H. Balkan, “Current crowding induced electromigration failure in flip chip solder joints,” Appl. Phys. Lett., Vol. 80, No. 4, pp. 580-583, 2002.
77. D. Dalleau, K. Weidz-Zaage, and Y. Danto, “Simulation of time depending void formation in copper, aluminum and tungsten plugged via structures,” Micro. Reliab. 43, pp. 1821-1826, 2003.
78. Y. S. Lai, and C. L. Kao, “Calibration of electromigration reliability of flip chip Package by Electromigration coupling analysis,” J. Electron. Mater., Vol. 35, N0. 5, pp. 972-977, 2006
79. Y. S. Lai, and C. L. Kao, “Characteristics of current crowding in flip-chip solder bumps,” Micro. Reliab., 46, pp. 915-922, 2006.
80. Y. S. Lai, and C. L. Kao, “Electrothermal Coupling Analysis of Current Crowding and Joule Heating in Flip-chip Packages,” Micro. Reliab., 46, pp. 1357-1368, 2006.
81. J. W. Nah, J. O. Suh, and K. N. Tu, “Effect of current crowding and Joule heating on electromigration-induced failure in flip chip composite solder joints tested at room temperature,” J. Appl. Phys., Vol. 98, 013715, 2005.
82. T. L. Shao, S. W. Liang, T. C. Lin, and C. Chen, “Three-dimensional simulation on current-density distribution in flip-chip solder joints under electric current stressing,” J. Appl. Phys., Vol. 98, 044509, 2005.
83. S. H. Chiu, T. L. Shao, and Chih Chen, D. J. Yao, and C. Y. Hsu, “Infrared microscopy of hot spots induced by Joule heating in flip-chip SnAg solder joints under accelerated electromigration,” Appl. Phys. Lett. 88, 0221110, 2006.
84. W. D. Callister, Jr., Materials Science and Engineering, John Willey & Sons, New York, pp. 94-107, 1990.
85. P. G. Shewmon, Diffusion in Solid, The Minerals, Materials, and Materials Society, Warrendale, PA, pp. 9-34, 1989.
86. N. G. Ainslie, F. M. D’Heurle, and O. C. Wells, “Coating, mechanical constraints, and pressure effects on electromigration”, Appl. Phys. Lett., 20 (4), pp.173-174, 1972.
87. H. U. Schreiber, “Electromigration mechanisms in aluminum lines”, Solid States Electronics, 28, pp.1153-1163, 1984.
88. I. A. Blech and C. Herring, “ Stress Generation by Electromigration”, Appl. Phys. Lett., 29, pp. 131-133, 1976.
89. C. S. Hau-Riege and C. V. Thompson, “The Effects of Microstructural Transitions at Width Transitions on Interconnect Reliability”, J. Appl. Phys., 87, pp. 8467-8472, 2000.
90. E. Glickman, N. Osipov, A. Ivanov, and M. Nathan, “Diffusional Creep as a tress Relaxation Mechanism in Electromigration”, J. Appl. Phys., 83, pp. 100-107, 1998.
91. I. A. Blech and K. L. Tai, “Measurement of Stress Gradients Generated by Electromigration”, Appl. Phys. Lett., 30, pp. 387-389, 1977.
92. L. Arnaud, G. Tartavel, P. Waltz, and L. Ulmer, “Analysis of Blech Product Threshold in Passivated AlCu Interconnects”, IITC, pp. 289-291, 1998.
93. R. S. Hemmert and M. Costa, “Electromigration-Induced Compresses in Encapsulated Thin-Film Conductor”, IRPS, pp. 64-69, 1991.
94. G. L. Baldini , I. D. Munari , A. Scorzoni and F.Fantini “ Electromigration in Thin Films for Microelectronics“, Micro. Reliab., Vol. 33, No. 11/12, pp.1779 -1805, 1993.
95. EIA/JEDEC Standard, “Standard Method for Measuring and Using the Temperature Coefficient of Resistance to Determine the Temperature of A Metallization Line”, JEDEC33-B, Electronic Industries Association, Feb. 2004.
96. EIA/JEDEC Standard, “Isothermal Electromigration Test Procedure”, JEDEC61, Electronic Industries Association, Apr. 1997.
97. J. H. Lau, and Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGraw-Hill, New York, 1997.
98. H. J. Chen, Modern Physical Metallurgy, Hsiao-Yuan Press, Taipei, 1986. (in Chinese)
99. C.T. Peng, C. T. Kuo, K. N. Chiang, Terry Ku, and Kenny Chang, “Experimental Characterization and Mechanical Behavior Analysis of Intermetallic Compounds of Sn-3.5Ag Lead-free Solder Bump with Ti/Cu/Ni UBM Copper Chip”, Micro. Reliab., Vol. 46/2-4, pp. 523-534, 2006.
100. P. T. Vianco, A. C. Kilgo and R. Grant, “Intermetallic Compounds Layer Growth by Solid State Reactions between 52Bi-42Sn Solder and Copper”, ibid. 24, pp. 1493, 1985
101. P. L. Tu, Y. C. Chan and J. K. Lai, “Effect of Intermetallic Compounds on the Thermal Fatigue of Surface Mount Solder Joints”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 1, February, pp. 87-93, 1997.
102. C. K. S. Alex, Y. C. Chan and J. K. Lai, "Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 2, pp. 161-166, 1997.
103. Y. C. Chan, P. L. Tu, A. C. K. So and J. K. Lai, “ Effect of Intermetallic Compounds on the Shear Fatigue of Cu/63Sn-37Pb Solder Joints”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, Vol. 20, No. 4, November, pp. 463-469, 1997.
104. R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd ed., Wiley, New York, pp. 504-505, 1989.
105. K. A. Brakke, “The Surface Evolver and the Stability of Liquid Surface”, Phil. Trans. R. Soc., Lond. A, Vol. 354, pp. 2143-2157, 1996.
106. Chiang K. N. and Yuan C. A., "An Overview of Solder Bump Shape Prediction Algorithms with Validations", IEEE Trans. Adv. Packag., Vol.24, No.2, pp.158-162, 2001.
107. S. M. Hinrich, M. Schaefer, S. A. Schroeder, and P. S. Lee, "Prediction of Solder Joint Geometries in Array-Type Interconnects", ASME Trans. J. Electron. Packag., Vol. 118, pp.114-121, 1996.
108. Chiang K. N. and Liu C. M., "Solder Reflow Prediction of Hybrid Pad Packaging System", IEEE Trans. Comp. Packag. Technol., Vol. 2, pp. 340-348, 2002.
109. P. B. Shou, Numerical analysis of electromagnetic fields, Springer-Verlag, Berlin, 1993.
110. B. S. Guru and H. R. Hiziroglu, Electromagnetic Field Theory Fundamentals, Cambridge University Press, New York, 2004
111. EIA/JEDEC Standard, “Standard Method for Calculating the Electromigration Model Parameters for Current Density and Temperature”, JEDEC63, Electronic Industries Association, Feb. 1998.
112. Egor Popop, Engineering Mechanics of Solids, Prentice Hall, New Jersey, pp. 243, 1990.
113. J. P. Holman, Experimental Methods for Engineers, McGraw-Hill, New York, 1994.
114. Y. T. Lin, K. C. Chang, C. T. Peng, and K. N. Chiang, "Parametric Design and Reliability Analysis of WIT Wafer Level Packaging", ASME Trans. J. Electron. Packag., Vol. 124, No.3, pp.234-239, 2002.
115. K. N. Chiang, C. N. Liu, and C. T. Peng, "Parametric Reliability Analysis of No-Underfill Flip Chip Package", IEEE Trans. Comp. Packag. Technol., Vol. 24, No.4, pp.635-640, 2001.
116. Y. H. Liu, and K. L. Lin, “Damages and microstructural variation of high-lead and eutectic SnPb composite flip chip solder bumps induced by electromigration,” J. Mater. Res., Vol. 20, No. 8, pp. 2184-2193, 2005.
117. F. Y. Ouyang, K. N. Tu, C. L. Kao, and Y. S. Lai, “Effect of electromigration in the anodic Al interconnect on melting of flip chip solder joints,” Appl. Phys. Lett. 90, 211914, 2007.
118. J. G. Kaufman, Properties of Aluminum alloys, TA480. A69, pp. 11, 1999.
119. M. E. Saryche, Y. V. Zhitnikov, L. Borucki, C. L. Liu, and T. M. Makhviladz, “General model for mechanical stress evoluation during electromigration”, J. Appl. Phys., Vol. 86, No. 6, pp. 3068-3075, 1999.