簡易檢索 / 詳目顯示

研究生: 吳東霖
Wu, Tung-Lin
論文名稱: Service-driven Approximate LT Codes
服務導向可控式LT編碼技術研究
指導教授: 王家祥
Wang, Jia-Shung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 104
中文關鍵詞: 錯誤更正碼LT編碼技術廣播網路服務導向
外文關鍵詞: Error Correction Codes, LT Codes, Broadcast Channel, Service-driven, Unequal Error Protection
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網際網路的發展和成熟,各式各樣的網路應用隨之興起,視訊串流服務也是最熱門的項目之一。然而在非可靠的網際網路環境下,難以避免的封包丟失使得視訊資料無法保證被即時或順利地傳送。因此在視訊串流的服務中,系統對於視訊資料傳送的時間延遲,以及網路封包丟失的掌控性特別地要求。採用錯誤更正碼在視訊資料傳送前進行編碼保護,為一種目前主流的解決方案。Digital Fountain codes是無限編碼率的錯誤更正碼,其解碼率以機率形式表現,其中最著名的是由Luby所提出的LT codes。LT codes的編/解碼皆可在線性於視訊資料量的時間內完成,並且實作上容易而簡單。可惜的是,LT codes並無法保證可解碼資料的選擇性,對於不同部分擁有相異重要性的視訊串流資料而言,直接地套用並非是好的解決方案。另外,根據LT codes的理論,唯有當原始資料的數量接近無限多,才能確保擁有最小的編碼冗餘度,導致實際運用在有限數量的視訊串流資料時,編碼冗餘度顯得過高而不盡理想。加上網路環境的不可靠性,一旦LT codes解碼器無法接收到一定數量的編碼資料,將致使解碼效能突然呈現嚴重地衰退。因此,我們試圖透過改良LT codes的編碼結構圖形,以適應重要性差異的視訊串流資料特性,並期待提出一般化的重要性差異視訊資料編碼解決方案,使得在非可靠性網路傳輸下,達到較佳的服務品質;並且即使面對各種異質的客戶端,視訊串流伺服器只需以一種編碼方式,便得以服務所有客戶端的需求,並幫助多數的使用者盡早解完所有的資訊。論文最後的模擬實驗中,顯示了我們的解決方案在重要性差異保護效能上勝過了採用LT codes架構的方案,對視訊串流資料在傳輸保護上取得較佳的優勢。並且面對有限數量的視訊串流資料時,我們的解決方案只需要較小的編碼冗餘度。此外,即使面對嚴峻的傳輸環境,其解碼效能亦能呈現和緩地漸次衰退。


    When it comes to multimedia communications, they are considerably sensitive to delay time and packet erasures. Digital Fountain codes are becoming increasingly important thanks to the ability to protect the source data in high probability. The most representative Digital Fountain codes are LT codes. With LT codes, the number of encoding packets can be decided on-the-fly and it is considerably favorable characteristic especially in broadcast channel. It is because different end-users actually suffer from distinct channel loss rates. However, LT encoder simply generates the encoding packets through randomly chosen encoding degree so that it cannot control or manage the service quality according to the distinct service demands of clients. In this thesis, we proposed a namely “service-driven approximate LT codes” that using numerous basic building structures to form the coding graph. The proposed encoder arranges the encoding degree through the basic building structure to generate encoding packets in accordance with various transmission policies and the overall degree distribution approximates to Ideal Soliton distribution. Through our investigations, we found that after transmitting a number of encoded packets in broadcast channel, the clients under low channel loss rates need more high-degree encoding packets to achieve fully-decoded, whereas others need more low-degree packets to recover more source data due to the lack of receiving sufficient encoding packets. Hence, the proposed encoder ensures to transmit low-degree encoding packets first to significantly cut down the average encoding degree then switches to generate high-degree encoding packets if the majority of clients decode a large percentage of source data to always satisfy the demands of the majority first. Furthermore, comparing to LT codes in point-to-point protocol, the proposed codes also introduce lower decoding code overhead in terms of short source data block length, better intermediate performance to achieve graceful quality degradation over a wide range of channel loss rates, and built-in unequal error protection property through appropriately arranging the placements of source data in the coding graph. Last but not least, similar to LT codes, the decoding complexity of the proposed codes is rather low so that it can be applied on real-time decoders, such as mobile phones, which only offer limited computational power and strictly delay-time constrained.

    中文摘要 1 謝誌 2 Abstract 3 Index of Contents 5 Index of Figures 7 Index of Tables 11 Chapter 1. Introduction 12 Chapter 2. Related Works 18 2-1. Forwarding Error Correction Codes 18 2-2. Reed-Solomon Code 19 2-3. Low-Density Parity-Check Code 21 2-4. Digital Fountain Codes 23 2-4-1. Luby Transform Codes 24 2-4-2. Raptor Codes 26 2-4-3. Sliding-Window Digital Fountain Codes 28 2-5. Unequal Error Protection for Streaming 29 2-5-1. Using Low-Density Parity-Check Code 29 2-5-2. SVC-Based Multisource Streaming 31 2-5-3. Unequal Growth Codes 33 Chapter 3. Method 36 3-1. Design Concept 36 3-2. Generating Low-Degree Encoding Packets 37 3-3. Generating High-Degree Encoding Packets 42 3-4. Analysis of the Low-degree Encoding Packets 49 3-5. The Encoding Process 55 3-6. The Rateless Transmission Policy 58 3-6-1. The non-ACK version of Transmission Policy 60 3-6-2. Degree Distribution Difference 61 3-6-3. The ACK version of Transmission Policy 67 Chapter 4. Simulation Results 71 4-1. In Broadcast Channel 72 4-2. In Point-to-Point Protocol 78 4-2-1. Decoding Probability versus Decoding Code Redundancy 78 4-2-2. The Degree Distribution of ACK version Transmission Policy 85 4-2-3. Graceful Quality Degradation – Good Intermediate Performance 88 4-2-4. Unequal Erasure Protection 90 Chapter 5. Conclusions and Future Works 93 Chapter 6. References 96

    [1] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Englewood Cliffs, N.J.: Prentice-Hall, 1983.
    [2] G. C. Clark and J. B. Cain, Error-Correction Coding for Digital Communications, New York: Plenum Press, 1981.
    [3] A. Barg and G. D. Forney, “Random Codes: Minimum Distances and Error Exponents,” IEEE Trans. on Inform Theory, Vol. 48, No. 9, pp.2568-2573, Sept. 2002.
    [4] B. W. Stephen and V. K. Bhargava, Reed-Solomon Codes and Their Applications, Wiley Press, 1999
    [5] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” J. Soc. Ind. Apple. Math. 8, pp. 200-204, June 1860..
    [6] W. Tan and J. R. Cruz, “Analyzing Low-Density Parity-Check Codes on Partial Response Channels with Erasures Using Density Evolution,” IEEE Trans. on Magnetics, Vol.40, No. 5, pp. 3411–3418, September 2004.
    [7] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman, “Efficient Erasure Correcting Codes,” IEEE Trans. on Information Theory, Vol. 47, No. 2, pp. 569-584, February 2001.
    [8] S. B. Wicker, Error Control Systems for Digital Communication and Storage. Englewood Cliffs, N.J.: Prentice-Hall, 1995.
    [9] S. G. Wilson, Digital Modulation and Coding, Englewood Cliffs, N.J.: Prentice-Hall, 1996.
    [10] D. Mackenzie, “Communication Speed Nears Terminal Velocity,” New Scientist 187.2507, 38-41 July 2005.
    [11] J. Li, “The Efficient Implementation of Reed-Solomon High Rate Erasure Resilient Codes,” IEEE International Conference on Acoustics, Speech, and Signal Processing, 18-23 March 2005.
    [12] Y. S. Kavian, A. Falahati, A. Khayatzadeh, and M. Naderi, “High Speed Reed-Solomon Decoder with Pipeline Architecture,” Proc. of the 2ed IFIP International Conference on Wireless and Optical Communications Networks, pp. 415-419, March 2005.
    [13] E. Piriou, C. Jego, P. Adde, B. R. Le, and M. Jezequel, “Efficient Architecture for Reed Solomon Block Turbo Code,” IEEE International Symposium on Circuits and Systems, Proceedings, 21-24 May 2006.
    [14] T. K. Moon, Error Correction Coding, Mathematical Methods and Algorithms, Wiley, 2005.
    [15] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, CUP 2003.
    [16] R. G. Gallager, “Low density Parity Check Codes,” IRE Trans. Inform. Theory, Vol. IT-8, pp. 21-28, Jan. 1962.
    [17] D. J. C. Mackay, “Good Error-Correcting Codes Based on Very Sparse Matrices,” IEEE Trans. Inform. Theory, Vol. 45, pp. 399-431, Mar. 1999.
    [18] T. Richardson, and R. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE Trans. Inform. Theory, Vol. 47, pp. 638-656, February 2001.
    [19] T. Richardson, “Error Floors of LDPC Codes,” 41st Annual Allerton Conference on Communications, Control, and Computing, Allerton, England, October 2003.
    [20] X. Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and Irregular Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inf. Theory, Vol. l20, No. 1, pp 386-398, January 2005.
    [21] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective Avoidance of Cycles in Irregular LDPC Code Construction,” IEEE Trans. Inf. Theory, Vol. 20, No. 1, pp 386-398, January 2004.
    [22] H. Xiao and A. H. Banihashemi, “Improved Progressive-Edge Growth (PEG) Construction of Irregular Codes,” IEEE Communication Letters, Vol. 8, No. 12, pp 715-717, December 2004.
    [23] L. Dinoi, F. Sottile, and S. Benedetto, “Design of Variable-Rate Irregular LDPC Codes with Low Error Floor,” IEEE International Conference on Communications, Seoul, Korea, May 2005.
    [24] M. Luby, “LT Codes,” in Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 271-282, 2002.
    [25] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A Digital Fountain Approach to Reliable Distribution of Bulk Data,” in Proc. of ACM SIGCOMM ’98, pp. 56–67, September 1998.
    [26] J. W. Byers, M. Luby and M. Mitzenmacher, “Accessing Multiple Mirror Sites in Parallel: Using Tornado Codes to Speed Up Downloads,” in Proc. of IEEE International Conference on Computer Communications (INFOCOM). New York, NY: IEEE, March 1999, pp. 275–283.
    [27] J. W. Byers, M. Luby and M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 8, October 2002.
    [28] A. G. Dimakis, V. Prabhakaran and K. Ramchandran, “Distributed Fountain Codes for Networked Storage,” in ICASSP. IEEE, May 2006, pp. 1149–1152.
    [29] A. Shokrollahi, “Raptor codes,” Technical report, Laboratoire d'algorithmique, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 2003.
    [30] D. J. C. MacKay, "Fountain codes," IEE Proceedings - Communications, vol.152, pp.1062-1068, 2005
    [31] M. Bogino, P. Cataldi, M. Grangetto, E. Magli, and G. Olmo,“Sliding-window digital fountain codes for streaming multimediacontents”, IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, May, 2007.
    [32] C. Poulliat, D. Declercq, and I. Fijalkow, “Enhancement of Unequal Error Protection Properties of LDPC Codes,” EURASIP Journal on Wireless Communication and networking, 2007.
    [33] A. S. Barbulescu and S. S. Pietrobon, “Rate compatible turbo codes,” Electronics Letters, vol. 31, no. 7, pp. 535–536, 1995.
    [34] W. Henkel and N. Von Deetzen, “Path pruning for unequal error protection turbo codes,” in International Zぴurich Seminar on Digital Communications, vol. 2006, pp. 142–145, Zぴurich, Switzerland, February 2006.
    [35] J. Ha and S.W.McLaughlin, “Optimal puncturing of irregular low-density parity-check codes,” in Proc. of IEEE International Conference on Communications (ICC ’03), vol. 5, pp.3110–3114, Seattle, Washington, USA, May 2003.
    [36] C.-F. Lan, K. R. Narayanan, and Z. Xiong, “Scalable image transmission using rate-compatible irregular repeat accumulate (IRA) codes,” in Proc. of IEEE International Conference on Image Processing (ICIP ’02), vol. 3, pp. 717–720, Rochester, NY, USA, September 2002.
    [37] P.S. Guinand, D. Boudreau, R. Kerr, ”Construction of UEP codes suitable for iterative decoding”, Proc. of 1999 CanadianWorkshop on Information Theory, Kingston, Ontario, Canada, pp.17–20, June 1999.
    [38] M. Luby, M. Mitzenmacher, A. Shokrollahi, ”Pratical loss resilient codes”, Proc. 29th Annu. ACM Symp. Theory of Computing, pp. 150-159, 1997.
    [39] S.-Y. Chung, T. J. Richsardson, R.L. Urbanke, ”Analysis of Sum-Product decoding of Low-Density-Parity-Check Codes using a Gaussian Approximation”, IEEE Trans. on Information Theory, Vol. 47, pp. 657–670, February 2001.
    [40] T. Schierl, K. G□nger, C. Hellge, and T. Wiegand, “SVC-based multisource streaming for robust video transmission in mobile ad hoc networks,” IEEE Wireless Communication, 2006, pp. 96-103.
    [41] H. Schwarz et al., “Combined Scalability Support for the scalable Extensions of H.264/AVC,” IEEE ICME, Amsterdam, The Netherlands, July 2005.
    [42] T. Wiegand et al. (Eds.), “Joint Draft 5: Scalable Video Coding (in integrated form with ITU-T Rec. H.264 |ISO/IEC 14996-10),” Joint Video Team (JVT), Doc. JVTR201, Bangkok, Thailand, Jan. 2006.
    [43] ITU-T Recommendation H.264 & ISO/IEC 14496-10 AVC, “Advanced Video Coding for Generic Audiovisual Services,” v3: 2005.
    [44] H. Schwarz, T. Hinz, D. Marpe, and T. Wiegand, “Constrained Inter-Layer Prediction for Single-Loop Decoding in Spatial Scalability,” In Proc. of IEEE International Conference on Image Processing (ICIP 2005), vol. 2, pp. 870-873, Sep. 2005.
    [45] A. G. Dimakis, J.Wang, and K. Ramchandran, “Unequal growth codes: Intermediate performance and unequal error protection for video streaming,” in MMSP Workshop, Crete, Greece, 2007.
    [46] S.-K. Chang, K.-C. Yang, and J.-S. Wang, “Unequal-protected LT code for layered video streaming,” in IEEE International Conference on Communications (ICC 2008), May 2008.
    [47] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, 2007, pp. 1103-1120.
    [48] J. P. Wagner, J. Chakareski and P. Frossard, “Streaming of Scalable Video from Multiple Servers Using Rateless Codes,” in ICME. IEEE, July 2006.
    [49] D. MacKay, “Information Theory, Inference, and Learning Algorithms, 2nd ed,” Cambridge University Press, December 2003.
    [50] U.C. Kozat and S.A. Ramprashad, “Unequal error protection rateless codes for scalable information delivery in mobile networks,” in Proc. of IEEE International Conference on Computer Communications (INFOCOM 2007), 2007, pp. 2316-2320.
    [51] Pasquale Cataldi, Miquel Pedros Shatarski, Marco Grangetto, and Enrico Magli, “Implementation and performance evaluation of LT and Raptor codes for multimedia applications,” in Proc .of IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE