簡易檢索 / 詳目顯示

研究生: 張智瑄
Chang, Emily
論文名稱: EZH2抑制口腔癌細胞侵襲性之新發現
The novel role of EZH2 in inhibiting invasion of oral cancer cells
指導教授: 陳令儀
Chen, Linyi
口試委員: 詹鴻霖
莊碧簪
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 58
中文關鍵詞: 口腔癌細胞侵襲
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔癌為頭頸癌的一種,為台灣第六大癌症,百分之九十以上的口腔癌屬於口腔鱗狀 上皮細胞癌。在歐美國家,口腔癌的肇因主要為長期抽煙、嚼食煙草、喝酒等行為。而在 台灣與東南亞國家,口腔癌的發生則與嚼食檳榔有高度的關聯性。因此,了解嚼食檳榔所 導致的口腔癌致病機轉,對於台灣的口腔癌治療是相當重要的。表觀遺傳學為不經由改變 核酸序列,而使基因表現發生變化的調控機制,許多癌症的發生與異常的表觀遺傳調控有 高度的關聯性。PRC2 複合物在基因的調控上扮演重要角色,其成員 EZH2 為 H3K27 的三 甲基轉移酶,常見過量表現於多種癌症以抑制抑癌基因表現。然而,EZH2 在口腔癌中的 異常表現及其機制仍不明確,此論文研究目的為探討 EZH2 在口腔鱗狀上皮細胞癌中的角 色。比較各種口腔癌細胞株, EZH2 的表現量在 OC3 細胞株有較高的情形。為了探討增 加的 EZH2 在 OC3 細胞株中所扮演的調控角色,本研究利用 shRNA 抑制 OC3 細胞株的 EZH2 表現。研究結果顯示,抑制 EZH2 表現的 OC3 細胞株相較於控制組有較強的侵襲與 遷移能力。另外,本研究進一步發現,抑制 OC3 細胞株的 EZH2 會使 ADAMTS1 與 MMP3 的 RNA 表現量增加。總結此篇論文研究結果,有別於其他癌症,EZH2 在 OC3 口腔癌細 胞株中很可能透過抑制 ADAMTS1 與 MMP3 的表現,以抑制癌細胞侵襲與遷移的能力。


    Oral cancer, the sixth most common cancer in Taiwan, is the major subtype of head and neck cancer, and more than 90% of oral cancer are oral squamous cell carcinoma (OSCC). Smoking, tobacco chewing and alcohol consumption are the major risk factor of OSCC in America and European countries. In Taiwan and most of the Southeast countries, betel nut chewing is highly associated with OSCC. Understanding the mechanisms of betel nut chewing-related OSCC is significant for oral cancer treatment in Taiwan. Aberrant epigenetics regulation is one of the hallmarks of cancer. Epigenetics modification regulates gene expression without the change of nucleotide sequence. Polycomb repressive complex 2 (PRC2) is a key epigenetic regulator required for gene silencing during development and cancer. Recent studies suggest that EZH2, the histone methyltransferase of PRC2, represses tumor suppressor genes by mediating trimethylation of histone H3 at lysine 27 (H3K27me3) in variety of cancer, including head and neck cancers. However, the anomaly of EZH2 expression and its underlying mechanisms in OSCC is still unclear. The aim of the present study is to investigate the role of EZH2 in OSCC. Comparing various OSCC cell lines, EZH2 was found elevated in human oral carcinoma 3 (OC3) cells. To examine the significance of the increased EZH2 in OC3 cells, we established OC3-shLacZ and OC3-shEZH2 stable cell lines. Intriguingly, the migration and invasion ability of OC3-shEZH2 cells increased compared to control OC3-shLacZ cells. Our findings suggest that EZH2 may suppress migration and invasion ability of oral cancer by inhibiting matrix metalloproteinase-3 (MMP3) and a disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1) expression.

    Abstract I 中文摘要 II 致謝 III Index V Abbreviations VIII Introduction 1 Materials and Methods 11 Antibodies and reagents 11 Cell lines and cell culture 12 Knockdown of EZH2 using lentivirus expressing shRNA constructs 12 MTT assays 13 Migration and invasion assays 13 Total RNA extraction, reverse transcription polymerase chain reaction (RT-PCR) and semi-quantitative real-time polymerase chain reaction (Q-PCR) 14 Protein extraction and western blotting 14 Chromatin immunoprecipitation (ChIP) analyses 15 Statistical analysis 16 Results 17 The protein expression level of EZH2 is higher in OC3 cells compared to other oral cancer cell lines 17 The mRNA expression level of EZH2 is higher in oral squamous cell carcinoma compared to normal tissue 17 Knockdown of EZH2 does not affect cell proliferation of OC3 cells 18 Knockdown of EZH2 enhances migration of OC3 cells 19 Knockdown of EZH2 promotes invasion of OC3 cells 20 EZH2 mRNA level of metastatic OSCC is lower than the non-metastatic OSCC 21 Knockdown of EZH2 does not alter the mRNA expression of TIMP family, E-cadherin, SLIT2, DAB2IP and RAP1GAP 21 Expression levels of MMP3 and ADAMTS1 in EZH2-knockdown OC3 cells 22 The increased ADAMTS1 expression in OC3-shEZH2 cells is correlated with H3K27me3 modification of ADAMTS1 promoter 23 Discussion 25 Figures 29 Figure 1. The EZH2 expressions in oral squamous cell carcinoma (OSCC) cell lines 29 Figure 2. EZH2 mRNA expressions in HNSCC and OSCC patients 31 Figure 3. Knockdown of EZH2 expression by shRNA in OC3 cells 32 Figure 4. Morphology of OC3-shLacZ and OC3-shEZH2 cells 34 Figure 5. Knockdown of EZH2 does not affect the proliferation rate of OC3 cells 35 Figure 6. Migration of OC3-shLacZ and OC3-shEZH2 cells 36 Figure 7. Invasion of OC3-shLacZ and OC3-shEZH2 cells 37 Figure 8. EZH2 mRNA levels of OSCC patients with or without lymph node metastasis 38 Figure 9. Expression levels of TIMP family, E-cadherin, SLIT2, DAB2IP and RAP1GAP in OC3-shLacZ and OC3-shEZH2 cells 40 Figure 10. Expression level of NF-κB, TNF, IL-6, IL-8, WNT5A, WNT5B, ADAM17, MMP3 and ADAMTS1 in OC3-shLacZ and OC3-shEZH2 cells 42 Figure 11. ChIP analysis of H3K27me3 on ADAMTS1 and MMP3 promoter 43 Table 44 Table 1. Primer sequences for PCR 44 Table 2. Primer sequences for Q-PCR 46 Appendix 47 Fig A1. mRNA level of EZH2 in metastatic breast and prostatic cancer 47 Reference 48

    1. (2014) GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevelence Worldwide in 2012. International Agency for Research on Cancer, http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
    2. (2014) Cancer registry annual report, 2011 Taiwan. Health promotion administration ministry of health and welfare of Taiwan
    3. (2013) 民國101年主要死因分析. Ministry of Health and Welfare
    4. Kleinsmith, L. J. (2006) Principles of Cancer Biology: International Edition, Pearson
    5. Nguyen, D. X., and Massague, J. (2007) Genetic determinants of cancer metastasis. Nature reviews. Genetics 8, 341-352
    6. Noguti, J., De Moura, C. F., De Jesus, G. P., Da Silva, V. H., Hossaka, T. A., Oshima, C. T., and Ribeiro, D. A. (2012) Metastasis from oral cancer: an overview. Cancer genomics & proteomics 9, 329-335
    7. Pereira M, O. D., Landman G and Kowalski L. (2007) Histologic subtypes of oral squamous cell carcinoma: prognostic revelance. J Can Dent Assoc 73, 339-344
    8. da Silva, S. D., Ferlito, A., Takes, R. P., Brakenhoff, R. H., Valentin, M. D., Woolgar, J. A., Bradford, C. R., Rodrigo, J. P., Rinaldo, A., Hier, M. P., and Kowalski, L. P. (2011) Advances and applications of oral cancer basic research. Oral oncology 47, 783-791
    9. Jones, P. A., and Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nature reviews. Genetics 3, 415-428
    10. Deb, G., Singh, A. K., and Gupta, S. (2014) EZH2: Not EZHY (Easy) to Deal. Molecular cancer research : MCR 12, 639-653
    11. Pirrotta, V. (1997) PcG complexes and chromatin silencing. Current opinion in genetics & development 7, 249-258
    12. Lewis, E. B. (1978) A gene complex controlling segmentation in Drosophila. Nature 276, 565-570
    13. Ju ̈ rgens, G. (1985) A group of genes controlling the spatial expression of the bithorax complex in Drosophila. . Nature 316, 153-155
    14. Duncan, I. M. (1982) Polycomblike: A gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. . Genetics 102, 49-70
    15. Plath, K., Fang, J., Mlynarczyk-Evans, S. K., Cao, R., Worringer, K. A., Wang, H., de la Cruz, C. C., Otte, A. P., Panning, B., and Zhang, Y. (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131-135
    16. Eskeland, R., Leeb, M., Grimes, G. R., Kress, C., Boyle, S., Sproul, D., Gilbert, N., Fan, Y., Skoultchi, A. I., Wutz, A., and Bickmore, W. A. (2010) Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Molecular cell 38, 452-464
    17. Margueron, R., and Reinberg, D. (2011) The Polycomb complex PRC2 and its mark in life. Nature 469, 343-349
    18. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes & development 16, 2893-2905
    19. van der Vlag, J., and Otte, A. P. (1999) Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nature genetics 23, 474-478
    20. Sparmann, A., and van Lohuizen, M. (2006) Polycomb silencers control cell fate, development and cancer. Nature reviews. Cancer 6, 846-856
    21. Sauvageau, M., and Sauvageau, G. (2010) Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell stem cell 7, 299-313
    22. Chase, A., and Cross, N. C. (2011) Aberrations of EZH2 in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 2613-2618
    23. Han, Z., Xing, X., Hu, M., Zhang, Y., Liu, P., and Chai, J. (2007) Structural basis of EZH2 recognition by EED. Structure 15, 1306-1315
    24. Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E., and Helin, K. (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. The EMBO journal 23, 4061-4071
    25. Li, G., Margueron, R., Ku, M., Chambon, P., Bernstein, B. E., and Reinberg, D. (2010) Jarid2 and PRC2, partners in regulating gene expression. Genes & development 24, 368-380
    26. Qian, C., and Zhou, M. M. (2006) SET domain protein lysine methyltransferases: Structure, specificity and catalysis. Cellular and molecular life sciences : CMLS 63, 2755-2763
    27. Dillon, S. C., Zhang, X., Trievel, R. C., and Cheng, X. (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome biology 6, 227
    28. Zhang, Y., and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & development 15, 2343-2360
    29. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185-196
    30. Cao, R., and Zhang, Y. (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Molecular cell 15, 57-67
    31. Kaneko, S., Li, G., Son, J., Xu, C. F., Margueron, R., Neubert, T. A., and Reinberg, D. (2010) Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes & development 24, 2615-2620
    32. Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G., Otte, A. P., Rubin, M. A., and Chinnaiyan, A. M. (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629
    33. Kleer, C. G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S. A., Ghosh, D., Sewalt, R. G., Otte, A. P., Hayes, D. F., Sabel, M. S., Livant, D., Weiss, S. J., Rubin, M. A., and Chinnaiyan, A. M. (2003) EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America 100, 11606-11611
    34. Yu, J., Cao, Q., Yu, J., Wu, L., Dallol, A., Li, J., Chen, G., Grasso, C., Cao, X., Lonigro, R. J., Varambally, S., Mehra, R., Palanisamy, N., Wu, J. Y., Latif, F., and Chinnaiyan, A. M. (2010) The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29, 5370-5380
    35. Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., Mehra, R., Laxman, B., Cao, X., Yu, J., Kleer, C. G., Varambally, S., and Chinnaiyan, A. M. (2008) Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274-7284
    36. Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S. K., Reczek, E. E., De Raedt, T., Guney, I., Strochlic, D. E., Macconaill, L. E., Beroukhim, R., Bronson, R. T., Ryeom, S., Hahn, W. C., Loda, M., and Cichowski, K. (2010) An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nature medicine 16, 286-294
    37. Banerjee, R., Mani, R. S., Russo, N., Scanlon, C. S., Tsodikov, A., Jing, X., Cao, Q., Palanisamy, N., Metwally, T., Inglehart, R. C., Tomlins, S., Bradford, C., Carey, T., Wolf, G., Kalyana-Sundaram, S., Chinnaiyan, A. M., Varambally, S., and D'Silva, N. J. (2011) The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene 30, 4339-4349
    38. Shin, Y. J., and Kim, J. H. (2012) The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PloS one 7, e30393
    39. Prasad, A., Fernandis, A. Z., Rao, Y., and Ganju, R. K. (2004) Slit protein-mediated inhibition of CXCR4-induced chemotactic and chemoinvasive signaling pathways in breast cancer cells. The Journal of biological chemistry 279, 9115-9124
    40. Kim, H. K., Zhang, H., Li, H., Wu, T. T., Swisher, S., He, D., Wu, L., Xu, J., Elmets, C. A., Athar, M., Xu, X. C., and Xu, H. (2008) Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma. Neoplasia 10, 1411-1420
    41. Damsky, C. H., Richa, J., Solter, D., Knudsen, K., and Buck, C. A. (1983) Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34, 455-466
    42. Wijnhoven, B. P., Dinjens, W. N., and Pignatelli, M. (2000) E-cadherin-catenin cell-cell adhesion complex and human cancer. The British journal of surgery 87, 992-1005
    43. Kalluri, R., and Weinberg, R. A. (2009) The basics of epithelial-mesenchymal transition. The Journal of clinical investigation 119, 1420-1428
    44. Moll, R., Mitze, M., Frixen, U. H., and Birchmeier, W. (1993) Differential loss of E-cadherin expression in infiltrating ductal and lobular breast carcinomas. The American journal of pathology 143, 1731-1742
    45. Wu, Z. Y., Zhan, W. H., Li, J. H., He, Y. L., Wang, J. P., Lan, P., Peng, J. S., and Cai, S. R. (2005) Expression of E-cadherin in gastric carcinoma and its correlation with lymph node micrometastasis. World journal of gastroenterology : WJG 11, 3139-3143
    46. Dote, H., Toyooka, S., Tsukuda, K., Yano, M., Ouchida, M., Doihara, H., Suzuki, M., Chen, H., Hsieh, J. T., Gazdar, A. F., and Shimizu, N. (2004) Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 2082-2089
    47. Wang, Z., Tseng, C. P., Pong, R. C., Chen, H., McConnell, J. D., Navone, N., and Hsieh, J. T. (2002) The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. The Journal of biological chemistry 277, 12622-12631
    48. Chen, H., Pong, R. C., Wang, Z., and Hsieh, J. T. (2002) Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 79, 573-581
    49. Chen, H., Toyooka, S., Gazdar, A. F., and Hsieh, J. T. (2003) Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. The Journal of biological chemistry 278, 3121-3130
    50. Chen, H., Tu, S. W., and Hsieh, J. T. (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. The Journal of biological chemistry 280, 22437-22444
    51. Zuo, H., Gandhi, M., Edreira, M. M., Hochbaum, D., Nimgaonkar, V. L., Zhang, P., Dipaola, J., Evdokimova, V., Altschuler, D. L., and Nikiforov, Y. E. (2010) Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer research 70, 1389-1397
    52. Zheng, H., Gao, L., Feng, Y., Yuan, L., Zhao, H., and Cornelius, L. A. (2009) Down-regulation of Rap1GAP via promoter hypermethylation promotes melanoma cell proliferation, survival, and migration. Cancer research 69, 449-457
    53. Takai, Y., Sasaki, T., and Matozaki, T. (2001) Small GTP-binding proteins. Physiological reviews 81, 153-208
    54. Hattori, M., and Minato, N. (2003) Rap1 GTPase: functions, regulation, and malignancy. Journal of biochemistry 134, 479-484
    55. Price, L. S., Hajdo-Milasinovic, A., Zhao, J., Zwartkruis, F. J., Collard, J. G., and Bos, J. L. (2004) Rap1 regulates E-cadherin-mediated cell-cell adhesion. The Journal of biological chemistry 279, 35127-35132
    56. Van Lint, P., and Libert, C. (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. Journal of leukocyte biology 82, 1375-1381
    57. Egeblad, M., and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. Nature reviews. Cancer 2, 161-174
    58. Chakraborti, S., Mandal, M., Das, S., Mandal, A., and Chakraborti, T. (2003) Regulation of matrix metalloproteinases: an overview. Molecular and cellular biochemistry 253, 269-285
    59. Kurahara, S., Shinohara, M., Ikebe, T., Nakamura, S., Beppu, M., Hiraki, A., Takeuchi, H., and Shirasuna, K. (1999) Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: correlations with tumor invasion and metastasis. Head & neck 21, 627-638
    60. Bode, W., Fernandez-Catalan, C., Grams, F., Gomis-Ruth, F. X., Nagase, H., Tschesche, H., and Maskos, K. (1999) Insights into MMP-TIMP interactions. Annals of the New York Academy of Sciences 878, 73-91
    61. Pulukuri, S. M., Patibandla, S., Patel, J., Estes, N., and Rao, J. S. (2007) Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 26, 5229-5237
    62. Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., Pinkel, D., Bissell, M. J., and Werb, Z. (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137-146
    63. Kessenbrock, K., Dijkgraaf, G. J., Lawson, D. A., Littlepage, L. E., Shahi, P., Pieper, U., and Werb, Z. (2013) A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell stem cell 13, 300-313
    64. Tan Ide, A., Ricciardelli, C., and Russell, D. L. (2013) The metalloproteinase ADAMTS1: a comprehensive review of its role in tumorigenic and metastatic pathways. International journal of cancer. Journal international du cancer 133, 2263-2276
    65. Porter, S., Clark, I. M., Kevorkian, L., and Edwards, D. R. (2005) The ADAMTS metalloproteinases. The Biochemical journal 386, 15-27
    66. Shindo, T., Kurihara, H., Kuno, K., Yokoyama, H., Wada, T., Kurihara, Y., Imai, T., Wang, Y., Ogata, M., Nishimatsu, H., Moriyama, N., Oh-hashi, Y., Morita, H., Ishikawa, T., Nagai, R., Yazaki, Y., and Matsushima, K. (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. The Journal of clinical investigation 105, 1345-1352
    67. Iruela-Arispe, M. L., Carpizo, D., and Luque, A. (2003) ADAMTS1: a matrix metalloprotease with angioinhibitory properties. Annals of the New York Academy of Sciences 995, 183-190
    68. Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F., and Matsushima, K. (1997) Molecular cloning of a gene encoding a new type of metalloproteinase-disintegrin family protein with thrombospondin motifs as an inflammation associated gene. The Journal of biological chemistry 272, 556-562
    69. Brown, H. M., Dunning, K. R., Robker, R. L., Pritchard, M., and Russell, D. L. (2006) Requirement for ADAMTS-1 in extracellular matrix remodeling during ovarian folliculogenesis and lymphangiogenesis. Developmental biology 300, 699-709
    70. Kuno, K., Okada, Y., Kawashima, H., Nakamura, H., Miyasaka, M., Ohno, H., and Matsushima, K. (2000) ADAMTS-1 cleaves a cartilage proteoglycan, aggrecan. FEBS letters 478, 241-245
    71. Lind, T., Birch, M. A., and McKie, N. (2006) Purification of an insect derived recombinant human ADAMTS-1 reveals novel gelatin (type I collagen) degrading activities. Molecular and cellular biochemistry 281, 95-102
    72. Rodriguez-Manzaneque, J. C., Carpizo, D., Plaza-Calonge Mdel, C., Torres-Collado, A. X., Thai, S. N., Simons, M., Horowitz, A., and Iruela-Arispe, M. L. (2009) Cleavage of syndecan-4 by ADAMTS1 provokes defects in adhesion. The international journal of biochemistry & cell biology 41, 800-810
    73. Rocks, N., Paulissen, G., Quesada-Calvo, F., Munaut, C., Gonzalez, M. L., Gueders, M., Hacha, J., Gilles, C., Foidart, J. M., Noel, A., and Cataldo, D. D. (2008) ADAMTS-1 metalloproteinase promotes tumor development through the induction of a stromal reaction in vivo. Cancer research 68, 9541-9550
    74. Ricciardelli, C., Frewin, K. M., Tan Ide, A., Williams, E. D., Opeskin, K., Pritchard, M. A., Ingman, W. V., and Russell, D. L. (2011) The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. The American journal of pathology 179, 3075-3085
    75. Tyan, S. W., Hsu, C. H., Peng, K. L., Chen, C. C., Kuo, W. H., Lee, E. Y., Shew, J. Y., Chang, K. J., Juan, L. J., and Lee, W. H. (2012) Breast cancer cells induce stromal fibroblasts to secrete ADAMTS1 for cancer invasion through an epigenetic change. PloS one 7, e35128
    76. Hirano, T., Hirose, K., Sakurai, K., Makishima, M., Sasaki, K., and Amano, S. (2011) Inhibition of tumor growth by antibody to ADAMTS1 in mouse xenografts of breast cancer. Anticancer research 31, 3839-3842
    77. Lin, S. C., Liu, C. J., Chiu, C. P., Chang, S. M., Lu, S. Y., and Chen, Y. J. (2004) Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 33, 79-86
    78. Lee, T. I., Johnstone, S. E., and Young, R. A. (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nature protocols 1, 729-748
    79. Sarkar, F. H. (2013) Epigenetics and cancer,
    80. Young, M. D., Willson, T. A., Wakefield, M. J., Trounson, E., Hilton, D. J., Blewitt, M. E., Oshlack, A., and Majewski, I. J. (2011) ChIP-seq analysis reveals distinct H3K27me3 profiles that correlate with transcriptional activity. Nucleic acids research 39, 7415-7427
    81. Kuriakose, M. A., Chen, W. T., He, Z. M., Sikora, A. G., Zhang, P., Zhang, Z. Y., Qiu, W. L., Hsu, D. F., McMunn-Coffran, C., Brown, S. M., Elango, E. M., Delacure, M. D., and Chen, F. A. (2004) Selection and validation of differentially expressed genes in head and neck cancer. Cellular and molecular life sciences : CMLS 61, 1372-1383
    82. Toruner, G. A., Ulger, C., Alkan, M., Galante, A. T., Rinaggio, J., Wilk, R., Tian, B., Soteropoulos, P., Hameed, M. R., Schwalb, M. N., and Dermody, J. J. (2004) Association between gene expression profile and tumor invasion in oral squamous cell carcinoma. Cancer genetics and cytogenetics 154, 27-35
    83. Smits, M., Nilsson, J., Mir, S. E., van der Stoop, P. M., Hulleman, E., Niers, J. M., de Witt Hamer, P. C., Marquez, V. E., Cloos, J., Krichevsky, A. M., Noske, D. P., Tannous, B. A., and Wurdinger, T. (2010) miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis. Oncotarget 1, 710-720
    84. Crea, F., Fornaro, L., Bocci, G., Sun, L., Farrar, W. L., Falcone, A., and Danesi, R. (2012) EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer metastasis reviews 31, 753-761
    85. Rao, Z. Y., Cai, M. Y., Yang, G. F., He, L. R., Mai, S. J., Hua, W. F., Liao, Y. J., Deng, H. X., Chen, Y. C., Guan, X. Y., Zeng, Y. X., Kung, H. F., and Xie, D. (2010) EZH2 supports ovarian carcinoma cell invasion and/or metastasis via regulation of TGF-beta1 and is a predictor of outcome in ovarian carcinoma patients. Carcinogenesis 31, 1576-1583
    86. Sudo, T., Utsunomiya, T., Mimori, K., Nagahara, H., Ogawa, K., Inoue, H., Wakiyama, S., Fujita, H., Shirouzu, K., and Mori, M. (2005) Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. British journal of cancer 92, 1754-1758
    87. O'Donnell, R. K., Kupferman, M., Wei, S. J., Singhal, S., Weber, R., O'Malley, B., Cheng, Y., Putt, M., Feldman, M., Ziober, B., and Muschel, R. J. (2005) Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene 24, 1244-1251
    88. Lee, S. T., Li, Z., Wu, Z., Aau, M., Guan, P., Karuturi, R. K., Liou, Y. C., and Yu, Q. (2011) Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers. Molecular cell 43, 798-810
    89. Huang, C. L., Liu, D., Nakano, J., Ishikawa, S., Kontani, K., Yokomise, H., and Ueno, M. (2005) Wnt5a expression is associated with the tumor proliferation and the stromal vascular endothelial growth factor--an expression in non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 8765-8773
    90. Pourreyron, C., Reilly, L., Proby, C., Panteleyev, A., Fleming, C., McLean, K., South, A. P., and Foerster, J. (2012) Wnt5a is strongly expressed at the leading edge in non-melanoma skin cancer, forming active gradients, while canonical Wnt signalling is repressed. PloS one 7, e31827
    91. Deraz, E. M., Kudo, Y., Yoshida, M., Obayashi, M., Tsunematsu, T., Tani, H., Siriwardena, S. B., Keikhaee, M. R., Qi, G., Iizuka, S., Ogawa, I., Campisi, G., Lo Muzio, L., Abiko, Y., Kikuchi, A., and Takata, T. (2011) MMP-10/stromelysin-2 promotes invasion of head and neck cancer. PloS one 6, e25438
    92. Baker, E. A., Leaper, D. J., Hayter, J. P., and Dickenson, A. J. (2006) The matrix metalloproteinase system in oral squamous cell carcinoma. The British journal of oral & maxillofacial surgery 44, 482-486
    93. Stott-Miller, M., Houck, J. R., Lohavanichbutr, P., Mendez, E., Upton, M. P., Futran, N. D., Schwartz, S. M., and Chen, C. (2011) Tumor and salivary matrix metalloproteinase levels are strong diagnostic markers of oral squamous cell carcinoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 20, 2628-2636
    94. Blot, W. J., McLaughlin, J. K., Winn, D. M., Austin, D. F., Greenberg, R. S., Preston-Martin, S., Bernstein, L., Schoenberg, J. B., Stemhagen, A., and Fraumeni, J. F., Jr. (1988) Smoking and drinking in relation to oral and pharyngeal cancer. Cancer research 48, 3282-3287
    95. Merletti, F., Boffetta, P., Ciccone, G., Mashberg, A., and Terracini, B. (1989) Role of tobacco and alcoholic beverages in the etiology of cancer of the oral cavity/oropharynx in Torino, Italy. Cancer research 49, 4919-4924
    96. Chiba, I. (2001) Prevention of Betel Quid Chewers' Oral Cancer in the Asian-Pacific Area. Asian Pacific journal of cancer prevention : APJCP 2, 263-269
    97. Secretan, B., Straif, K., Baan, R., Grosse, Y., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Freeman, C., Galichet, L., Cogliano, V., and Group, W. H. O. I. A. f. R. o. C. M. W. (2009) A review of human carcinogens--Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. The lancet oncology 10, 1033-1034
    98. Ko, Y. C., Huang, Y. L., Lee, C. H., Chen, M. J., Lin, L. M., and Tsai, C. C. (1995) Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology 24, 450-453
    99. Humans, I. W. G. o. t. E. o. C. R. t. (2004) Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization, International Agency for Research on Cancer 85, 1-334
    100. Lu, Y. C., Chen, Y. J., Wang, H. M., Tsai, C. Y., Chen, W. H., Huang, Y. C., Fan, K. H., Tsai, C. N., Huang, S. F., Kang, C. J., Chang, J. T., and Cheng, A. J. (2012) Oncogenic function and early detection potential of miRNA-10b in oral cancer as identified by microRNA profiling. Cancer prevention research 5, 665-674
    101. Li, Z., Wang, Y., Qiu, J., Li, Q., Yuan, C., Zhang, W., Wang, D., Ye, J., Jiang, H., Yang, J., and Cheng, J. (2013) The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget 4, 2532-2549
    102. Fujii, S., Ito, K., Ito, Y., and Ochiai, A. (2008) Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation. The Journal of biological chemistry 283, 17324-17332
    103. Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., Jonsdottir, G. A., Stewart, R., and Thomson, J. A. (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell stem cell 1, 299-312
    104. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326
    105. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jorgensen, H. F., John, R. M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., and Fisher, A. G. (2006) Chromatin signatures of pluripotent cell lines. Nature cell biology 8, 532-538
    106. de Napoles, M., Mermoud, J. E., Wakao, R., Tang, Y. A., Endoh, M., Appanah, R., Nesterova, T. B., Silva, J., Otte, A. P., Vidal, M., Koseki, H., and Brockdorff, N. (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Developmental cell 7, 663-676
    107. Buchwald, G., van der Stoop, P., Weichenrieder, O., Perrakis, A., van Lohuizen, M., and Sixma, T. K. (2006) Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. The EMBO journal 25, 2465-2474
    108. Schuettengruber, B., Chourrout, D., Vervoort, M., Leblanc, B., and Cavalli, G. (2007) Genome regulation by polycomb and trithorax proteins. Cell 128, 735-745
    109. Spivakov, M., and Fisher, A. G. (2007) Epigenetic signatures of stem-cell identity. Nature reviews. Genetics 8, 263-271
    110. Pietersen, A. M., and van Lohuizen, M. (2008) Stem cell regulation by polycomb repressors: postponing commitment. Current opinion in cell biology 20, 201-207
    111. Xu, K., Wu, Z. J., Groner, A. C., He, H. H., Cai, C., Lis, R. T., Wu, X., Stack, E. C., Loda, M., Liu, T., Xu, H., Cato, L., Thornton, J. E., Gregory, R. I., Morrissey, C., Vessella, R. L., Montironi, R., Magi-Galluzzi, C., Kantoff, P. W., Balk, S. P., Liu, X. S., and Brown, M. (2012) EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465-1469
    112. Cavalli, G. (2012) Molecular biology. EZH2 goes solo. Science 338, 1430-1431
    113. Deb, G., Thakur, V. S., and Gupta, S. (2013) Multifaceted role of EZH2 in breast and prostate tumorigenesis: epigenetics and beyond. Epigenetics : official journal of the DNA Methylation Society 8, 464-476
    114. Shi, B., Liang, J., Yang, X., Wang, Y., Zhao, Y., Wu, H., Sun, L., Zhang, Y., Chen, Y., Li, R., Zhang, Y., Hong, M., and Shang, Y. (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Molecular and cellular biology 27, 5105-5119
    115. Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., Dziechciarkova, M., Ehrmann, J., Klein, J., Fridman, E., Skarda, J., Srovnal, J., Hajduch, M., Murray, P., and Kolar, Z. (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC cancer 7, 55
    116. Yu, Y. P., Landsittel, D., Jing, L., Nelson, J., Ren, B., Liu, L., McDonald, C., Thomas, R., Dhir, R., Finkelstein, S., Michalopoulos, G., Becich, M., and Luo, J. H. (2004) Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22, 2790-2799
    117. Chandran, U. R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., Michalopoulos, G., Becich, M., and Monzon, F. A. (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC cancer 7, 64

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE