簡易檢索 / 詳目顯示

研究生: 林傳宗
Lin, Chuan-Zong
論文名稱: 彈性曲面影像感測器陣列之製作與分析
Fabrication and Analysis of a Stretchable Curved Image Sensor Array
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員: 洪景華
蕭德瑛
周敏傑
蔡宏營
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 曲面影像感測器場曲
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   微型數位影像擷取裝置多半使用成像面為曲面的球面透鏡,並不能與一般平面的CMOS影像感測器吻合,因此本研究嘗試製作彈性曲面影像感測器陣列來吻合不同透鏡的成像曲面,以解決成像面與影像感測器的匹配問題。
      本研究將自行設計的影像感測器晶片以陣列的排列方式嵌入PDMS膜片之中,並利用金屬打線來做為晶片之間的連結方式,藉此製作出彈性曲面影像感測器陣列,並進行相關的延展性與電性量測。在延展性量測中,本研究製作之曲面影像感測器陣列約可容忍17.86 %的單軸應變,換算成曲率變化範圍約為邊長22 mm之膜片從平面變化至曲率半徑14.84 mm之曲面。本研究於影像感測器陣列的光電特性量測中使用了焦距40 mm、60 mm 以及120 mm的透鏡分別配合曲率半徑40 mm、60 mm 以及120 mm的曲面基座以及平面基座來進行量測與比較,並針對不同規格的影像感測器建立光源照度與輸出電流的數學關係,藉此將曲面影像感測器陣列的輸出電流轉換成照度分佈,並與光學模擬結果做比較。在透鏡焦距40 mm之量測結果中,曲面之照度分佈百分比約優於平面至多9%;在透鏡焦距60 mm之量測結果中,曲面之照度分佈百分比約優於平面至多17%;在透鏡焦距120 mm之量測結果中,曲面之照度分佈百分比約優於平面至多1%。
      本研究以矽晶片嵌入PDMS彈性膜片並輔以金屬打線來連接成陣列的概念,成功製作出彈性曲面影像感測器陣列,並且在初步的測試與討論中證實了此概念具備相當的可行性。


      Most of the digital image capture devices use spherical lenses which have curved image plane that cannot match the flat CMOS image sensors. In this research, we try to design and fabricate a stretchable and curved image sensors array that can match the curved image planes formed by different spherical lenses.
      In this research, we realize the stretchable and curved image sensors array by embedding image sensor chips which were designed by our own into a stretchable PDMS film, and using the wire bonding technology to connect these chips into an array form. After the stretchable and curved image sensors array was fabricated, a series tests about stretchability and photoelectrical characteristic of this image sensors array were conducted. In the stretchability tests, the maximum uniaxial strain was 17.86 % which can be transferred into a dynamic curvature range from flat to a 14.84 mm radius of curvature for a 22mm-length film. In the photoelectrical characteristic tests, we use different lenses with suitable bases to perform the measurement and analyzing the result. The combination of lenses and bases are: 40 mm focal length with 40 mm radius of curvature, 60 mm focal length with 60 mm radius of curvature, and 120 mm focal length with 120 mm radius of curvature. In addition all the measurement data from different radii of curvature were compared with those from the flat base. We also construct equations that describe the relationship between the illuminance of light source and the output current of different image sensors. By using these equations, we transferred the measurement data from the current intensity distribution into the illumiance distribution, and then were compared with the optical simulation result. The comparison results show that in the case of 40 mm focal length, the illuminance distribution of curved base is up to 9% better than flat base; in the case of 60 mm focal length, the illuminance distribution of curved base is up to 17% better than flat base; in the case of 120 mm focal length, the illuminance distribution of curved base is up to 1% better than flat base.
      In this research, we successfully fabricate a stretchable and curved image sensor array with a concept of embedding silicon chips into PDMS film and connecting these chips through wire bonding. From a series tests, analyses, and discussions about the image sensor array, we do show that the concept is very feasible.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 背景與研究動機 1 1.2 研究流程與論文大綱 3 第二章 透鏡成像面簡述與文獻回顧 5 2.1 透鏡與成像面簡述 5 2.1.1 幾何光學與成像面 5 2.1.2 平面與曲面之聚焦 6 2.2 文獻回顧 7 2.2.1 液壓與彈性膜片的形變 7 2.2.2 影像感測器的像素布局 11 2.2.3 曲面影像感測器的製作 19 2.2.4 彈性連線的應用 23 第三章 影像感測器的設計與製作 26 3.1 影像感測器之作動原理 26 3.2 影像感測器之設計 27 3.2.1 影像感測器之電路設計 27 3.2.2 感光區結構設計 29 3.3 影像感測器之製作 30 3.4 彈性曲面影像感測器陣列之製作 43 3.4.1彈性曲面影像感測器陣列之概念架構 43 3.4.2彈性曲面影像感測器陣列之製作步驟 51 第四章 量測結果與討論 55 4.1 影像感測器光電特性量測 55 4.1.1 量測方法與規劃 55 4.1.2 量測結果 60 4.2 彈性曲面影像感測器陣列之延展性量測 73 4.2.1 量測方法與規劃 73 4.2.2 量測結果 75 4.3 曲面影像感測器陣列之光電特性量測方法與規劃 79 4.4 曲面影像感測器陣列照度分佈之光學模擬 83 4.5 曲面影像感測器陣列之光電特性量測結果 91 第五章 結論與未來展望 96 5.1 結論 96 5.2 未來展望 97 參考文獻 98

    [1] G. C. Knollman, J. L. S. Bellin, and J. L. Weaver, “Variable-Focus Liquid-Filled Hydroacoustic Lens,” The Journal of the Acoustical Society of America, Vol. 49, No. 1, pp. 91-91. 1971.
    [2] Norio Sugiura and Shinzo Morita, “Variable-Focus Liquid-Filled Optical Lens,” Applied Optics, Vol. 32, No. 22, pp. 4181-4186, 1993.
    [3] Andrew H. Rawicz and Iouri Mikhailenko, “Modeling a Variable-Focus Liquid-Filled Optical Lens,” Applied Optics, Vol. 35, No. 10, pp. 1587-1589, 1996.
    [4] Guo-Hua Feng and Yu-Chin Chou, “Fabrication and Characterization of Optofluidic Flexible Meniscus–Biconvex Lens System,” Sensors and Actuators A: Physical, Vol. 156, No. 2, pp. 342-349, 2009.
    [5] Dein Shaw, Shy-Pin Cuo, and C. W. Lin, “Analysis of the Required Shape of a Flexible Sensor for Different Lens Focus,” Proceedings of SPIE, Vol. 7429, No. 74290K, pp. 1-11, 2009.
    [6] Weiquan Zhang and Mansun Chan, “Properties and Design Optimization of Photo-Diodes Available in a Current CMOS Technology,” IEEE Electron Devices Meeting, pp. 22-25, 1998.
    [7] 鄭喬任, “互補式金氧半影像感測器幾何與微透鏡結構之整合設計,” 國立清華大學碩士論文, 中華民國九十四年.
    [8] Sang-Wook Han and Euisik Yoon, “Low Dark Current CMOS Image Sensor Pixel with Photodiode Structure Enclosed by P-Well,” Electronics Letters, Vol. 42, No. 20, pp. 1145-1146, 2006.
    [9] Igor Shcherback, Alexander Belenky, and Orly Yadid-Pecht, “Empirical Dark Current Modeling for Complementary Metal Oxide Semiconductor Active Pixel Sensor,” Optical Engineering, Vol. 41, No. 6, pp. 1216-1219, 2002.
    [10] Igor Shcherback and Orly Yadid-Pecht, “Photoresponse Analysis and Pixel Shape Optimization for CMOS Active Pixel Sensors,” IEEE Transactions on Electron Devices, Vol. 50, No. 1, pp. 12-18, 2003
    [11] Igor Shcherback, Tatiana Danov, and Orly Yadid-Pecht, “A Comprehensive CMOS APS Crosstalk Study: Photoresponse Model, Technology, and Design Trends,” IEEE Transactions on Electron Devices, Vol. 51, No. 12, pp. 2033-2041, 2004.
    [12] Takao Someya, Yusaku Kato, Shingo Iba, Yoshiaki Noguchi, Tsuyoshi Sekitani, Hiroshi Kawaguchi, and Takayasu Sakurai, “Integration of Organic FETs with Organic Photodiodes for a Large Area, Flexible, and Lightweight Sheet Image Scanners,” IEEE Transactions on Electron Devices, Vol. 52, No. 11, pp. 2502-2511, 2005.
    [13] Heung Cho Ko, Mark P. Stoykovich, Jizhou Song, Viktor Malyarchuk, Won Mook Choi, Chang-Jae Yu, Joseph B. Geddes III, Jianliang Xiao, Shuodao Wang, Yonggang Huang, and John A. Rogers, “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, Vol. 454, pp. 748-753, 2008.
    [14] Dominique Brosteaux, Fabrice Axisa, Mario Gonzalez, and Jan Vanfleteren, “Design and Fabrication of Elastic Interconnections for Stretchable Electronic Circuits,” IEEE Electron Device Letters, Vol. 28, No. 7, pp. 552-554, 2007.
    [15] Hsiu-Ting Hsu, Wang-Shen Su, Chih-Chun Lee, Hsin-Yu Huang, Hung-Yi Lin, and Weileun Fang, “3D Integration of Micro Optical Components on Flexible Transparent Substrate with Through-Hole-Vias,” IEEE Micro Electro Mechanical Systems, pp. 536-539, 2010.
    [16] Inhwa Jung, Jianliang Xiao, Viktor Malyarchuk, Chaofeng Lu, Ming Li, Zhuangjian Liu, Jongseung Yoon, Yonggang Huang, and John A. Rogers, “Dynamically Tunable Hemispherical Electronic Eye Camera System with Adjustable Zoom Capability,” PNAS, Vol. 5, pp.1788-1793, 2011.
    [17] http://www.sonystyle.com.tw/is-bin/intershop.static/WFS/Sony-SonyStyle-Site/Sony-SonyStyle/zh_TW/DSC-TX10-L/images/pict46.jpg
    [18] 汪怡欣, “PDMS軟式可調焦鏡片分析與製作,” 國立台灣科技大學碩士論文, 中華民國九十七年.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE