研究生: |
許舒瑜 Hsu, Shu-Yu |
---|---|
論文名稱: |
埃及聖䴉鳥喙之發育 Development of Beak of African Sacred Ibis |
指導教授: |
黃貞祥
Ng, Chen-Siang |
口試委員: |
游智凱
Yu, Jr-Kai 陳柏宇 Chen, Po-Yu |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 埃及聖䴉 、顱面發育 、鳥喙型態差異 |
外文關鍵詞: | Sacred ibis, craniofacial development, beak morphology |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
埃及聖䴉(Threskiornis aethiopicus)是一種非洲撒哈拉沙漠以南以及中東地區的本土朱鷺科鳥類,然而近三十年來已經在台灣成為對生態環境威脅極大的外來物種。鳥喙的形狀大小在物種間有高度多樣性,而擁有細長且微微下彎的喙是埃及聖䴉一個顯著的特徵。雖然對於不同型態鳥喙相關的分子發育機制已經有很多研究,但大部分的研究都是針對比較常被研究的物種,包含雞、鴨以及一些雀形目的鳥類,其他物種則很少被研究。在本研究當中,我們進行了埃及聖䴉以及雞早期胚胎顱面結構的轉錄體比較分析,希望可以找出控制埃及聖䴉長出如此長且大的喙的相關分子發育機制。經由比較兩個物種的喙的基因表現,我們發現埃及聖䴉控制鳥喙形狀的發育的分子發育機制可能和先前的研究有很大的不同。首先,我們發現初級纖毛相關的基因可能和物種間喙的型態差異的發育有關。而一些和骨骼發育相關的基因表現差異顯示在埃及聖䴉中成骨細胞分化以及骨骼礦化的時間可能比雞還要晚,符合先前研究所提出來的假說。最後,經由生物分子路徑分析(Ingenuity Pathway Analysis)以及骨密度的測量,我們認為埃及聖䴉可能藉由抑制骨密度相關基因表現發育出如此巨大且細長的鳥喙。經由對於埃及聖䴉鳥喙的發育研究,我們可以對於擁有類似表徵的涉禽類的發育以及演化機制有更深入的認識。
The African sacred ibis (Threskiornis aethiopicus) is a native wading bird in Sub-Saharan Africa, but has become an invasive species in Taiwan for more than 30 years. The African sacred ibis has a prominent long curved beak that enables them to probe into the water or soil for diet. The molecular mechanisms of species-specific development of beak size and shape have been studied for decades, however, most of them focused on few avian species such as chicken and finches. To identify molecular mechanisms underlying the development of long beak in the sacred ibis, we performed a comparative transcriptomic analysis of craniofacial prominences, which are developmental components of avian beak, in early-stage embryos of chicken and sacred ibis. Our data demonstrated a species-specific genetic pattern in the long and large beak development in sacred ibis. We indicated a possible correlation of cilium formation to species-specific beak morphological difference. Differential expression of several genes of skeleton development were partially matched to the previous hypothesis of delayed bone formation and resorption process in the development of a larger beak. In addition, we speculated that a looser trabecular bone structure enables the development of a larger beak in sacred ibis due to the down-regulation of bone mineral density related pathway. This study provides a better understanding of developmental and evolutionary biology of wading birds that have similar traits of long beaks.
Abbas-Aghababazadeh, F., Li, Q., & Fridley, B. L. (2018). Comparison of normalization approaches for gene expression studies completed with high-throughput sequencing. PloS one, 13(10), e0206312.
Abramyan, J., & Richman, J. M. (2018). Craniofacial development: discoveries made in the chicken embryo. The International journal of developmental biology, 62(1-2-3), 97-107.
Abzhanov, A., Kuo, W. P., Hartmann, C., Grant, B. R., Grant, P. R., & Tabin, C. J. (2006). The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature, 442(7102), 563-567. https://doi.org/10.1038/nature04843
Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R., & Tabin, C. J. (2004). Bmp4 and morphological variation of beaks in Darwin's finches. Science, 305(5689), 1462-1465. https://doi.org/10.1126/science.1098095
Acampora, D., Merlo, G. R., Paleari, L., Zerega, B., Postiglione, M. P., Mantero, S., Bober, E., Barbieri, O., Simeone, A., & Levi, G. (1999). Craniofacial, vestibular and bone defects in mice lacking the Distal-less-related gene Dlx5. Development, 126(17), 3795-3809.
Adams, J. E., Mughal, Z., Damilakis, J., & Offiah, A. C. (2012). Chapter 12 - Radiology. In F. H. Glorieux, J. M. Pettifor, & H. Jüppner (Eds.), Pediatric Bone (Second Edition) (pp. 277-307). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-382040-2.10012-7
Ainsworth, S. J., Stanley, R. L., & Evans, D. J. (2010). Developmental stages of the Japanese quail. J Anat, 216(1), 3-15. https://doi.org/10.1111/j.1469-7580.2009.01173.x
Alappat, S., Zhang, Z. Y., & Chen, Y. P. (2003). Msx homeobox gene family and craniofacial development. Cell research, 13(6), 429-442.
Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Paleobiology, 5(3), 296-317.
Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. In: Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom.
Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B., & Christensen, S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology, 15(4), 199-219.
Armenteros, J. J. A., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., & Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology, 37(4), 420-423.
Armstrong, A. P., Tometsko, M. E., Glaccum, M., Sutherland, C. L., Cosman, D., & Dougall, W. C. (2002). A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. Journal of Biological Chemistry, 277(46), 44347-44356.
Barlow, A. J., & Francis-West, P. H. (1997). Ectopic application of recombinant BMP-2 and BMP-4 can change patterning of developing chick facial primordia. Development, 124(2), 391-398.
Bendall, A. J., & Abate-Shen, C. (2000). Roles for Msx and Dlx homeoproteins in vertebrate development. Gene, 247(1-2), 17-31.
Bialek, P., Kern, B., Yang, X., Schrock, M., Sosic, D., Hong, N., Wu, H., Yu, K., Ornitz, D. M., & Olson, E. N. (2004). A twist code determines the onset of osteoblast differentiation. Developmental cell, 6(3), 423-435.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120.
Bosse, M., Spurgin, L. G., Laine, V. N., Cole, E. F., Firth, J. A., Gienapp, P., Gosler, A. G., McMahon, K., Poissant, J., & Verhagen, I. (2017). Recent natural selection causes adaptive evolution of an avian polygenic trait. Science, 358(6361), 365-368.
Boyce, B. F., & Xing, L. (2007). The Rankl/Rank/Opg pathway. Current osteoporosis reports, 5(3), 98-104.
Brugmann, S. A., Allen, N. C., James, A. W., Mekonnen, Z., Madan, E., & Helms, J. A. (2010). A primary cilia-dependent etiology for midline facial disorders. Human molecular genetics, 19(8), 1577-1592.
Bryant, D. M., Johnson, K., DiTommaso, T., Tickle, T., Couger, M. B., Payzin-Dogru, D., Lee, T. J., Leigh, N. D., Kuo, T.-H., & Davis, F. G. (2017). A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell reports, 18(3), 762-776.
Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature methods, 18(4), 366-368.
Bune, A., Hayman, A., Evans, M., & Cox, T. (2001). Mice lacking tartrate‐resistant acid phosphatase (Acp 5) have disordered macrophage inflammatory responses and reduced clearance of the pathogen, Staphylococcus aureus. Immunology, 102(1), 103-113.
Cappariello, A., Maurizi, A., Veeriah, V., & Teti, A. (2014). The Great Beauty of the osteoclast. Archives of biochemistry and biophysics, 558, 70-78.
Cardoso, M. C., Leonhardt, H., & Nadal-Ginard, B. (1993). Reversal of terminal differentiation and control of DNA replication: cyclin A and Cdk2 specifically localize at subnuclear sites of DNA replication. Cell, 74(6), 979-992.
Chaves, J. A., Cooper, E. A., Hendry, A. P., Podos, J., De León, L. F., Raeymaekers, J. A., MacMillan, W. O., & Uy, J. A. C. (2016). Genomic variation at the tips of the adaptive radiation of Darwin's finches. Molecular Ecology, 25(21), 5282-5295.
Chen, Z., Wu, C., Gu, W., Klein, T., Crawford, R., & Xiao, Y. (2014). Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials, 35(5), 1507-1518.
Cheng, Y., Gao, B., Wang, H., Han, N., Shao, S., Wu, S., Song, G., Zhang, Y. E., Zhu, X., & Lu, X. (2017). Evolution of beak morphology in the Ground Tit revealed by comparative transcriptomics. Frontiers in zoology, 14(1), 1-13.
Cheng, Y., Miller, M. J., Zhang, D., Song, G., Jia, C., Qu, Y., & Lei, F. (2020). Comparative genomics reveals evolution of a beak morphology locus in a high-altitude songbird. Molecular biology and evolution, 37(10), 2983-2988.
Clabaut, C., Herrel, A., Sanger, T. J., Smith, T. B., & Abzhanov, A. (2009). Development of beak polymorphism in the African seedcracker, Pyrenestes ostrinus. Evolution & development, 11(6), 636-646.
Cortés, C. R., Metzis, V., & Wicking, C. (2015). Unmasking the ciliopathies: craniofacial defects and the primary cilium. Wiley Interdisciplinary Reviews: Developmental Biology, 4(6), 637-653.
Cucco, M., Alessandria, G., Bissacco, M., Carpegna, F., Fasola, M., Gagliardi, A., Gola, L., Volponi, S., & Pellegrino, I. (2021). The spreading of the invasive sacred ibis in Italy. Scientific Reports, 11(1), 1-13.
Dagdeviren, D., Tamimi, F., Lee, B., Sutton, R., Rauch, F., & Retrouvey, J. M. (2019). Dental and craniofacial characteristics caused by the p. Ser40Leu mutation in IFITM5. American Journal of Medical Genetics Part A, 179(1), 65-70.
Datta, N. S., Chen, C., Berry, J. E., & McCauley, L. K. (2005). PTHrP signaling targets cyclin D1 and induces osteoblastic cell growth arrest. Journal of Bone and Mineral Research, 20(6), 1051-1064.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21.
Dodig, M., Tadic, T., Kronenberg, M. S., Dacic, S., Liu, Y.-H., Maxson, R., Rowe, D. W., & Lichtler, A. C. (1999). EctopicMsx2Overexpression Inhibits andMsx2Antisense Stimulates Calvarial Osteoblast Differentiation. Developmental biology, 209(2), 298-307.
Dong, D., Lei, M., Liu, Y., & Zhang, S. (2013). Comparative inner ear transcriptome analysis between the Rickett’s big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx). BMC genomics, 14(1), 1-10.
Doube, M., Kłosowski, M. M., Arganda-Carreras, I., Cordelières, F. P., Dougherty, R. P., Jackson, J. S., Schmid, B., Hutchinson, J. R., & Shefelbine, S. J. (2010). BoneJ: free and extensible bone image analysis in ImageJ. Bone, 47(6), 1076-1079.
Ealba, E. L., Jheon, A. H., Hall, J., Curantz, C., Butcher, K. D., & Schneider, R. A. (2015). Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Developmental biology, 408(1), 151-163.
Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics, 5(1), 1-19.
Ek-Rylander, B., Bill, P., Norgård, M., Nilsson, S., & Andersson, G. (1991). Cloning, sequence, and developmental expression of a type 5, tartrate-resistant, acid phosphatase of rat bone. Journal of Biological Chemistry, 266(36), 24684-24689.
Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology, 20(1), 1-14.
Evans, C., Hardin, J., & Stoebel, D. M. (2018). Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in bioinformatics, 19(5), 776-792.
Faletra, F., D'Adamo, A. P., Bruno, I., Athanasakis, E., Biskup, S., Esposito, L., & Gasparini, P. (2014). Autosomal recessive Stickler syndrome due to a loss of function mutation in the COL9A3 gene. American Journal of Medical Genetics Part A, 164(1), 42-47.
Finn, R. D., Clements, J., & Eddy, S. R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic acids research, 39(suppl_2), W29-W37.
Franchi, A., Calzolari, A., & Zampi, G. (1998). Immunohistochemical detection of c-fos and c-jun expression in osseous and cartilaginous tumours of the skeleton. Virchows Archiv, 432(6), 515-519.
Franz-Odendaal, T. A. (2011). Induction and patterning of intramembranous bone. Front Biosci, 16(7), 2734-2746.
Fu, H., Zhao, H., Yang, Y., Duan, K., & Guo, T. (2020). CDK5 Inhibitor Seliciclib Promotes Osteoblastic Differentiation of MSCs and Suppresses the Migration of MG-63 Osteosarcoma Cells. bioRxiv.
Fujita, M., Urano, T., Horie, K., Ikeda, K., Tsukui, T., Fukuoka, H., Tsutsumi, O., Ouchi, Y., & Inoue, S. (2002). Estrogen activates cyclin-dependent kinases 4 and 6 through induction of cyclin D in rat primary osteoblasts. Biochemical and biophysical research communications, 299(2), 222-228.
Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: a signalling centre during vertebrate development. Nature Reviews Genetics, 11(5), 331-344.
Gonzalez-Pena, D., Nixon, S. E., O’Connor, J. C., Southey, B. R., Lawson, M. A., McCusker, R. H., Borras, T., Machuca, D., Hernandez, A. G., & Dantzer, R. (2016). Microglia transcriptome changes in a model of depressive behavior after immune challenge. PloS one, 11(3), e0150858.
Graña, X., & Reddy, E. P. (1995). Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene, 11(2), 211-220.
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., & Zeng, Q. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7), 644.
Graf, D., Malik, Z., Hayano, S., & Mishina, Y. (2016). Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine & growth factor reviews, 27, 129-139.
Grubb, B. J. (2006). Developmental Biology, Eighth Edition. Scott F. Gilbert, editor. Integrative and Comparative Biology, 46(5), 652-653. https://doi.org/10.1093/icb/icl011
Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., & Lieber, M. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature protocols, 8(8), 1494-1512.
Hall, J., Jheon, A. H., Ealba, E. L., Eames, B. F., Butcher, K. D., Mak, S.-S., Ladher, R., Alliston, T., & Schneider, R. A. (2014). Evolution of a developmental mechanism: species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis. Developmental biology, 385(2), 380-395.
Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of morphology, 88(1), 49-92.
Han, J., Ishii, M., Bringas Jr, P., Maas, R. L., Maxson Jr, R. E., & Chai, Y. (2007). Concerted action of Msx1 and Msx2 in regulating cranial neural crest cell differentiation during frontal bone development. Mechanisms of development, 124(9-10), 729-745.
Hanagata, N., Li, X., Morita, H., Takemura, T., Li, J., & Minowa, T. (2011). Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. Journal of bone and mineral metabolism, 29(3), 279-290.
Hjorten, R., Hansen, U., Underwood, R. A., Telfer, H. E., Fernandes, R. J., Krakow, D., Sebald, E., Wachsmann-Hogiu, S., Bruckner, P., & Jacquet, R. (2007). Type XXVII collagen at the transition of cartilage to bone during skeletogenesis. Bone, 41(4), 535-542.
Hu, D., Marcucio, R. S., & Helms, J. A. (2003). A zone of frontonasal ectoderm regulates patterning and growth in the face. Development, 130(9), 1749-1758.
Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L., & Anderson, K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature, 426(6962), 83-87.
Javed, A., Chen, H., & Ghori, F. Y. (2010). Genetic and transcriptional control of bone formation. Oral and Maxillofacial Surgery Clinics, 22(3), 283-293.
Kalajzic, I., Staal, A., Yang, W.-P., Wu, Y., Johnson, S. E., Feyen, J. H., Krueger, W., Maye, P., Yu, F., & Zhao, Y. (2005). Expression profile of osteoblast lineage at defined stages of differentiation. Journal of Biological Chemistry, 280(26), 24618-24626.
Kamalian, S., Lev, M. H., & Gupta, R. (2016). Computed tomography imaging and angiography–principles. Handbook of clinical neurology, 135, 3-20.
Kansara, M., Tsang, M., Kodjabachian, L., Sims, N. A., Trivett, M. K., Ehrich, M., Dobrovic, A., Slavin, J., Choong, P. F., & Simmons, P. J. (2009). Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. The Journal of clinical investigation, 119(4), 837-851.
Kartzinel, R. Y., Huber, C. D., Le Underwood, V., Zhen, Y., Ruegg, K., Lohmueller, K. E., & Smith, T. B. (2018). Growth factor gene IGF1 is associated with bill size in the black-bellied seedcracker Pyrenestes ostrinus. Nature communications, 9(1), 1-12.
Kenkre, J., & Bassett, J. (2018). The bone remodelling cycle. Annals of clinical biochemistry, 55(3), 308-327.
Kitching, R., Qi, S., Li, V., Raouf, A., Vary, C. P., & Seth, A. (2002). Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3-E1 cells. Journal of bone and mineral metabolism, 20(5), 269-280.
Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews, 73(1), 79-123.
Knief, U., Schielzeth, H., Kempenaers, B., Ellegren, H., & Forstmeier, W. (2012). QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology, 21(15), 3704-3717.
Koivunen, J., Kemppainen, A. V., Finnilä, M. A., Keski-Filppula, R., Härönen, H., Tu, H., Pellikka, H., Heikkinen, A., Kylmäoja, E., & Sormunen, R. (2019). Collagen XIII-derived ectodomain regulates bone angiogenesis and intracortical remodeling. Matrix Biology, 83, 6-25.
Koivunen, J., Tu, H., Kemppainen, A., Anbazhagan, P., Finnilä, M. A., Saarakkala, S., Käpylä, J., Lu, N., Heikkinen, A., & Juffer, A. H. (2021). Integrin α11β1 is a receptor for collagen XIII. Cell and Tissue Research, 383(3), 1135-1153.
Komori, T. (2006). Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry, 99(5), 1233-1239.
Kouskoura, T., Fragou, N., Alexiou, M., John, N., Sommer, L., Graf, D., Katsaros, C., & Mitsiadis, T. A. (2011). The genetic basis of craniofacial and dental abnormalities. Schweizerische Monatsschrift für Zahnmedizin, 121(7-8), 636-646.
Kriventseva, E. V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F. A., & Zdobnov, E. M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic acids research, 47(D1), D807-D811.
Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology, 305(3), 567-580.
Lamichhaney, S., Berglund, J., Almen, M. S., Maqbool, K., Grabherr, M., Martinez-Barrio, A., Promerova, M., Rubin, C. J., Wang, C., Zamani, N., Grant, B. R., Grant, P. R., Webster, M. T., & Andersson, L. (2015). Evolution of Darwin's finches and their beaks revealed by genome sequencing. Nature, 518(7539), 371-375. https://doi.org/10.1038/nature14181
Lamichhaney, S., Han, F., Berglund, J., Wang, C., Almén, M. S., Webster, M. T., Grant, B. R., Grant, P. R., & Andersson, L. (2016). A beak size locus in Darwin’s finches facilitated character displacement during a drought. Science, 352(6284), 470-474.
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature methods, 9(4), 357.
Lee, D., Lee, Y., Choi, W., Chang, J., Kang, J.-H., Na, K.-J., & Chang, D.-W. (2015). Quantitative CT assessment of bone mineral density in dogs with hyperadrenocorticism. Journal of veterinary science, 16(4), 531-542.
Lee, S. H., Fu, K. K., Hui, J. N., & Richman, J. M. (2001). Noggin and retinoic acid transform the identity of avian facial prominences. Nature, 414(6866), 909-912.
Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics, 12(1), 1-16.
Li, S., Bai, S., Qin, X., Zhang, J., Irwin, D. M., Zhang, S., & Wang, Z. (2019). Comparison of whole embryonic development in the duck (Anas platyrhynchos) and goose (Anser cygnoides) with the chicken (Gallus gallus). Poult Sci, 98(8), 3278-3291. https://doi.org/10.3382/ps/pez133
Lin, N.-Y., Stefanica, A., & Distler, J. H. W. (2013). Autophagy. Autophagy, 9(8), 1253-1255. https://doi.org/10.4161/auto.25467
Liu, Y.-H., Tang, Z., Kundu, R. K., Wu, L., Luo, W., Zhu, D., Sangiorgi, F., Snead, M. L., & Maxson Jr, R. E. (1999). Msx2Gene Dosage Influences the Number of Proliferative Osteogenic Cells in Growth Centers of the Developing Murine Skull: A Possible Mechanism forMSX2-Mediated Craniosynostosis in Humans. Developmental biology, 205(2), 260-274.
Long, D. E., Villasante Tezanos, A. G., Wise, J. N., Kern, P. A., Bamman, M. M., Peterson, C. A., & Dennis, R. A. (2019). A guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography. PloS one, 14(2), e0211629.
Lopes, H. B., Freitas, G. P., Elias, C. N., Tye, C., Stein, J. L., Stein, G. S., Lian, J. B., Rosa, A. L., & Beloti, M. M. (2019). Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research Part A, 107(6), 1303-1313. https://doi.org/10.1002/jbm.a.36643
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15(12), 1-21.
Ma, H., Dean, D. C., Wei, R., Hornicek, F. J., & Duan, Z. (2021). Cyclin-dependent kinase 7 (CDK7) is an emerging prognostic biomarker and therapeutic target in osteosarcoma. Therapeutic advances in musculoskeletal disease, 13, 1759720X21995069.
Mallarino, R., Campàs, O., Fritz, J. A., Burns, K. J., Weeks, O. G., Brenner, M. P., & Abzhanov, A. (2012). Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. Proceedings of the National Academy of Sciences, 109(40), 16222-16227.
Mallarino, R., Grant, P. R., Grant, B. R., Herrel, A., Kuo, W. P., & Abzhanov, A. (2011). Two developmental modules establish 3D beak-shape variation in Darwin's finches. Proceedings of the National Academy of Sciences, 108(10), 4057-4062.
Marie, P. J., Haÿ, E., & Saidak, Z. (2014). Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends in Endocrinology & Metabolism, 25(11), 567-575.
Matsubara, T., Kida, K., Yamaguchi, A., Hata, K., Ichida, F., Meguro, H., Aburatani, H., Nishimura, R., & Yoneda, T. (2008). BMP2 Regulates Osterix through Msx2 and Runx2 during Osteoblast Differentiation∗. Journal of Biological Chemistry, 283(43), 29119-29125.
McCarthy, D. J., Chen, Y., & Smyth, G. K. (2012). Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic acids research, 40(10), 4288-4297.
McCollough, C. H., Leng, S., Yu, L., & Fletcher, J. G. (2015). Dual-and multi-energy CT: principles, technical approaches, and clinical applications. Radiology, 276(3), 637-653.
McHugh, K. P., Hodivala-Dilke, K., Zheng, M.-H., Namba, N., Lam, J., Novack, D., Feng, X., Ross, F. P., Hynes, R. O., & Teitelbaum, S. L. (2000). Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. The Journal of clinical investigation, 105(4), 433-440.
Miller, A. J., & Cole, S. E. (2014). Multiple Dlk1 splice variants are expressed during early mouse embryogenesis. International Journal of Developmental Biology, 58(1), 65-70.
Moon, Y. J., Yun, C.-Y., Choi, H., Kim, J. R., Park, B.-H., & Cho, E.-S. (2018). Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression. Experimental & molecular medicine, 50(7), 1-11.
Moon, Y. S., Smas, C. M., Lee, K., Villena, J. A., Kim, K.-H., Yun, E. J., & Sul, H. S. (2002). Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Molecular and cellular biology, 22(15), 5585-5592.
Moreno-Santillán, D. D., Machain-Williams, C., Hernández-Montes, G., & Ortega, J. (2019). De novo transcriptome assembly and functional annotation in five species of bats. Scientific Reports, 9(1), 1-12.
Muragaki, Y., Mariman, E. C., van Beersum, S. E., Perälä, M., van Mourik, J. B., Warman, M. L., Olsen, B. R., & Hamel, B. C. (1996). A mutation in the gene encoding the α2 chain of the fibril-associated collagen IX, COL9A2, causes multiple epiphyseal dysplasia (EDM2). Nature genetics, 12(1), 103-105.
Murray, J. R., Varian-Ramos, C. W., Welch, Z. S., & Saha, M. S. (2013). Embryological staging of the Zebra Finch, Taeniopygia guttata. J Morphol, 274(10), 1090-1110. https://doi.org/10.1002/jmor.20165
Nagai, H., Mak, S. S., Weng, W., Nakaya, Y., Ladher, R., & Sheng, G. (2011). Embryonic development of the emu, Dromaius novaehollandiae. Dev Dyn, 240(1), 162-175. https://doi.org/10.1002/dvdy.22520
Nakamura, Y., Nakane, Y., & Tsudzuki, M. (2019). Developmental stages of the blue-breasted quail (Coturnix chinensis). Anim Sci J, 90(1), 35-48. https://doi.org/10.1111/asj.13119
Newberry, E. P., Latifi, T., & Towler, D. A. (1998). Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5. Biochemistry, 37(46), 16360-16368.
Ng, C. S. (2021). Invasion and developmental genomics in an emerging bird model: The African sacred ibis. AIP Conference Proceedings,
Noda, K., Kitami, M., Kitami, K., Kaku, M., & Komatsu, Y. (2016). Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proceedings of the National Academy of Sciences, 113(19), E2589-E2597.
Nudelman, F., Pieterse, K., George, A., Bomans, P. H., Friedrich, H., Brylka, L. J., Hilbers, P. A., de With, G., & Sommerdijk, N. A. (2010). The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nature materials, 9(12), 1004-1009.
Ornitz, D. M., & Marie, P. J. (2002). FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes & development, 16(12), 1446-1465.
Pélabon, C., Firmat, C. J. P., Bolstad, G. H., Voje, K. L., Houle, D., Cassara, J., Le Rouzic, A., & Hansen, T. F. (2014). Evolution of morphological allometry.
Paic, F., Igwe, J. C., Nori, R., Kronenberg, M. S., Franceschetti, T., Harrington, P., Kuo, L., Shin, D.-G., Rowe, D. W., & Harris, S. E. (2009). Identification of differentially expressed genes between osteoblasts and osteocytes. Bone, 45(4), 682-692.
Panach, L., Pineda, B., Mifsut, D., Tarín, J. J., Cano, A., & García-Pérez, M. Á. (2016). The role of CD40 and CD40L in bone mineral density and in osteoporosis risk: A genetic and functional study. Bone, 83, 94-103.
Park, J. H., Lee, N. K., & Lee, S. Y. (2017). Current understanding of RANK signaling in osteoclast differentiation and maturation. Molecules and cells, 40(10), 706.
Patrick, S., Birur, N. P., Gurushanth, K., Raghavan, A. S., & Gurudath, S. (2017). Comparison of gray values of cone-beam computed tomography with hounsfield units of multislice computed tomography: an in vitro study. Indian Journal of Dental Research, 28(1), 66.
Perrault, I., Halbritter, J., Porath, J. D., Gérard, X., Braun, D. A., Gee, H. Y., Fathy, H. M., Saunier, S., Cormier-Daire, V., & Thomas, S. (2015). IFT81, encoding an IFT-B core protein, as a very rare cause of a ciliopathy phenotype. Journal of medical genetics, 52(10), 657-665.
Pham, H. T., Kram, V., Dar, Q.-A., Komori, T., Ji, Y., Mohassel, P., Rooney, J., Li, L., Kilts, T. M., & Bonnemann, C. (2020). Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Scientific Reports, 10(1), 1-14.
Powder, K. E., Ku, Y.-C., Brugmann, S. A., Veile, R. A., Renaud, N. A., Helms, J. A., & Lovett, M. (2012). A cross-species analysis of microRNAs in the developing avian face. PloS one, 7(4), e35111.
Raimondo, S., Saieva, L., Vicario, E., Pucci, M., Toscani, D., Manno, M., Raccosta, S., Giuliani, N., & Alessandro, R. (2019). Multiple myeloma-derived exosomes are enriched of amphiregulin (AREG) and activate the epidermal growth factor pathway in the bone microenvironment leading to osteoclastogenesis. Journal of hematology & oncology, 12(1), 1-15.
Retrouvey, J.-M., Taqi, D., Tamimi, F., Dagdeviren, D., Glorieux, F. H., Lee, B., Hazboun, R., Krakow, D., Sutton, V. R., & Bober, M. (2019). Oro-dental and cranio-facial characteristics of osteogenesis imperfecta type V. European journal of medical genetics, 62(12), 103606.
Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology, 11(3), 1-9.
Rocha, F. R. G., Delitto, A. E., de Souza, J. A. C., González-Maldonado, L. A., Wallet, S. M., & Junior, C. R. (2020). Relevance of caspase-1 and Nlrp3 inflammasome on inflammatory bone resorption in a murine model of periodontitis. Scientific Reports, 10(1), 1-11.
Rodriguez Celin, M., Moosa, S., & Fano, V. (2018). Uncommon IFITM5 mutation associated with severe skeletal deformity in osteogenesis imperfecta. Annals of human genetics, 82(6), 477-481.
Ruiz-Perez, V. L., Blair, H. J., Rodriguez-Andres, M. E., Blanco, M. J., Wilson, A., Liu, Y.-N., Miles, C., Peters, H., & Goodship, J. A. (2007). Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia.
Sasaki, S., Tsukamoto, M., Saito, M., Hojyo, S., Fukada, T., Takami, M., & Furuichi, T. (2018). Disruption of the mouse Slc39a14 gene encoding zinc transporter ZIP 14 is associated with decreased bone mass, likely caused by enhanced bone resorption. FEBS open bio, 8(4), 655-663.
Schilling, T. F., & Le Pabic, P. (2014). Neural crest cells in craniofacial skeletal development. In Neural Crest Cells (pp. 127-151). Elsevier.
Schmidt, T. (2010). Human CPAP and CP110 in centriole elongation and ciliogenesis lmu].
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
Schneider, R. A. (2007). How to tweak a beak: molecular techniques for studying the evolution of size and shape in Darwin's finches and other birds. Bioessays, 29(1), 1-6.
Schneider, R. A. (2018). Neural crest and the origin of species‐specific pattern. genesis, 56(6-7), e23219.
Schneider, R. A., & Helms, J. A. (2003). The cellular and molecular origins of beak morphology. Science, 299(5606), 565-568.
Schneider, R. A., Hu, D., Rubenstein, J. L. R., Maden, M., & Helms, J. A. (2001). Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH.
Schreiber, J. J., Anderson, P. A., & Hsu, W. K. (2014). Use of computed tomography for assessing bone mineral density. Neurosurgical focus, 37(1), E4.
Seppey, M., Manni, M., & Zdobnov, E. M. (2019). BUSCO: assessing genome assembly and annotation completeness. In Gene prediction (pp. 227-245). Springer.
Setiawati, R., & Rahardjo, P. (2019). Bone development and growth. Osteogenesis and bone regeneration, 10.
Shen, W., Le, S., Li, Y., & Hu, F. (2016). SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS one, 11(10), e0163962.
Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols, 4(1), 44-57.
Shingleton, A. (2010). Allometry: the study of biological scaling. Nature Education Knowledge, 3(10), 2.
Singh, S. K., Gui, M., Koh, F., Yip, M. C., & Brown, A. (2020). Structure and activation mechanism of the BBSome membrane protein trafficking complex. elife, 9, e53322.
Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate: reference-free quality assessment of de novo transcriptome assemblies. Genome research, 26(8), 1134-1144.
Song, X., Liu, S., Qu, X., Hu, Y., Zhang, X., Wang, T., & Wei, F. (2011). BMP2 and VEGF promote angiogenesis but retard terminal differentiation of osteoblasts in bone regeneration by up-regulating Id1. Acta Biochim Biophys Sin, 43(10), 796-804.
Sonnhammer, E. L., & Koonin, E. V. (2002). Orthology, paralogy and proposed classification for paralog subtypes. TRENDS in Genetics, 18(12), 619-620.
Starling, S. (2019). A role for autophagy in bone biology. Nature Reviews Endocrinology, 15(8), 438-439.
Sunters, A., McCluskey, J., & Grigoriadis, A. E. (1998). Control of cell cycle gene expression in bone development and during c‐Fos‐induced osteosarcoma formation. Developmental genetics, 22(4), 386-397.
Suter, A., Everts, V., Boyde, A., Jones, S. J., Lüllmann-Rauch, R., Hartmann, D., Hayman, A. R., Cox, T. M., Evans, M. J., & Meister, T. (2001). Overlapping functions of lysosomal acid phosphatase (LAP) and tartrate-resistant acid phosphatase (Acp5) revealed by doubly deficient mice.
Taverna, S., Pucci, M., Giallombardo, M., Di Bella, M. A., Santarpia, M., Reclusa, P., Gil-Bazo, I., Rolfo, C., & Alessandro, R. (2017). Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Scientific Reports, 7(1), 1-14.
Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484), 1504-1508.
Teixeira da Rocha, S., Charalambous, M., Lin, S.-P., Gutteridge, I., Ito, Y., Gray, D., Dean, W., & Ferguson-Smith, A. C. (2009). Gene dosage effects of the imprinted delta-like homologue 1 (dlk1/pref1) in development: implications for the evolution of imprinting. PLoS genetics, 5(2), e1000392.
Theoleyre, S., Wittrant, Y., Tat, S. K., Fortun, Y., Redini, F., & Heymann, D. (2004). The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine & growth factor reviews, 15(6), 457-475.
Tian, H., Feng, J., Li, J., Ho, T.-V., Yuan, Y., Liu, Y., Brindopke, F., Figueiredo, J. C., Magee, W., & Sanchez-Lara, P. A. (2017). Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Human molecular genetics, 26(5), 860-872.
Trachana, K., Larsson, T. A., Powell, S., Chen, W. H., Doerks, T., Muller, J., & Bork, P. (2011). Orthology prediction methods: a quality assessment using curated protein families. Bioessays, 33(10), 769-780.
Venables, W. N., & Ripley, B. D. (2013). Modern applied statistics with S-PLUS. Springer Science & Business Media.
Viguet-Carrin, S., Garnero, P., & Delmas, P. (2006). The role of collagen in bone strength. Osteoporosis international, 17(3), 319-336.
Voje, K. L., Hansen, T. F., Egset, C. K., Bolstad, G. H., & Pelabon, C. (2014). Allometric constraints and the evolution of allometry. Evolution, 68(3), 866-885.
Wada, T., Nakashima, T., Hiroshi, N., & Penninger, J. M. (2006). RANKL–RANK signaling in osteoclastogenesis and bone disease. Trends in molecular medicine, 12(1), 17-25.
Wagner, E. (2002). Functions of AP1 (Fos/Jun) in bone development. Annals of the rheumatic diseases, 61(suppl 2), ii40-ii42.
Walczak-Sztulpa, J., Eggenschwiler, J., Osborn, D., Brown, D. A., Emma, F., Klingenberg, C., Hennekam, R. C., Torre, G., Garshasbi, M., & Tzschach, A. (2010). Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene. The American Journal of Human Genetics, 86(6), 949-956.
Wall, W. P. (1983). The correlation between high limb-bone density and aquatic habits in recent mammals. Journal of Paleontology, 197-207.
Wang, F., Tarkkonen, K., Nieminen‐Pihala, V., Nagano, K., Majidi, R. A., Puolakkainen, T., Rummukainen, P., Lehto, J., Roivainen, A., & Zhang, F. P. (2019). Mesenchymal cell‐derived Juxtacrine Wnt1 signaling regulates osteoblast activity and osteoclast differentiation. Journal of Bone and Mineral Research, 34(6), 1129-1142.
Wang, L., Huang, J., Moore, D. C., Song, Y., Ehrlich, M. G., & Yang, W. (2019). SHP2 regulates intramembranous ossification by modifying the TGFβ and BMP2 signaling pathway. Bone, 120, 327-335.
Wasef, S., Subramanian, S., O’Rorke, R., Huynen, L., El-Marghani, S., Curtis, C., Popinga, A., Holland, B., Ikram, S., & Millar, C. (2019). Mitogenomic diversity in Sacred Ibis Mummies sheds light on early Egyptian practices. PloS one, 14(11), e0223964.
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191.
Wei, Q., Zhang, Y., Li, Y., Zhang, Q., Ling, K., & Hu, J. (2012). The BBSome controls IFT assembly and turnaround in cilia. Nature cell biology, 14(9), 950-957.
Wilson, D. G., Phamluong, K., Lin, W. Y., Barck, K., Carano, R. A., Diehl, L., Peterson, A. S., Martin, F., & Solloway, M. J. (2012). Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Developmental biology, 363(2), 413-425.
Woronowicz, K. C., & Schneider, R. A. (2019). Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo, 10(1), 1-21.
Wu, M., Chen, G., & Li, Y.-P. (2016). TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone research, 4(1), 1-21.
Wu, P. (2004). Molecular Shaping of the Beak. Science, 305(5689), 1465-1466. https://doi.org/10.1126/science.1098109
Wu, P., Jiang, T. X., Shen, J. Y., Widelitz, R. B., & Chuong, C. M. (2006). Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution. Dev Dyn, 235(5), 1400-1412. https://doi.org/10.1002/dvdy.20825
Yésou, P., Clergeau, P., Bastian, S., Reeber, S., & Maillard, J.-F. (2017). The Sacred Ibis in Europe: ecology and management. Br. Birds, 110, 197-212.
Young, N. M., Hu, D., Lainoff, A. J., Smith, F. J., Diaz, R., Tucker, A. S., Trainor, P. A., Schneider, R. A., Hallgrímsson, B., & Marcucio, R. S. (2014). Embryonic bauplans and the developmental origins of facial diversity and constraint. Development, 141(5), 1059-1063.
Yu, S., Sharma, R., Nie, D., Jiao, H., Im, H.-J., Lai, Y., Zhao, Z., Zhu, K., Fan, J., & Chen, D. (2013). ADAR1 ablation decreases bone mass by impairing osteoblast function in mice. Gene, 513(1), 101-110.
Yuan, X. (2015). The role of intraflagellar transport 80 (IFT80) in skeletal development State University of New York at Buffalo].
Yuan, X., Cao, J., He, X., Serra, R., Qu, J., Cao, X., & Yang, S. (2016). Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nature communications, 7(1), 1-13.
Yusuf, L., Heatley, M. C., Palmer, J. P., Barton, H. J., Cooney, C. R., & Gossmann, T. I. (2020). Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome research, 30(4), 553-565.
Zaghloul, N. A., & Brugmann, S. A. (2011). The emerging face of primary cilia. genesis, 49(4), 231-246.
Zelditch, M. L., & Fink, W. L. (1996). Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology, 22(2), 241-254.
Zhao, X., Deng, P., Feng, J., Wang, Z., Xiang, Z., Han, X., Bai, D., & Pae, E.-K. (2016). Cysteine dioxygenase type 1 inhibits osteogenesis by regulating Wnt signaling in primary mouse bone marrow stromal cells. Scientific Reports, 6(1), 1-8.