簡易檢索 / 詳目顯示

研究生: 李明怡
Lee, Ming-Yi
論文名稱: 使用電荷注入單元類比數位轉換器的無須動態元件匹配二階多位元離散時間三角積分調變器
A DEM-Free Second-Order Multi-Bit Discrete-Time Delta-Sigma Modulator with Charge-Injection-Cell ADC
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 盧峙丞
Lu, Chih-Cheng
謝秉璇
Hsieh, Ping-Hsuan
鄭桂忠
Tang, Kea-Tiong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 75
中文關鍵詞: 三角積分調變器電荷注入單元類比數位轉換器無須動態元件匹配
外文關鍵詞: Delta-Sigma Modulator, Charge-Injection-Cell ADC, DEM-Free
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個使用電荷注入單元類比數位轉換器(Charge-Injection-Cell Analog-to-Digital Converter)的無須動態元件匹配(Dynamic Element Matching)二階多位元離散時間三角積分調變器(Delta-Sigma Modulator)。
    作為多位元三角積分調變器,採用多位元量化器(Multi-Bit Quantizer)與數位類比轉換器(Digital-to-Analog Converter)的動態元件匹配一直是必須處理的議題,因此本論文提出一種可重複使用之電荷注入電路的架構,藉由重複使用相同的單位電容與反饋電容,以此達成多位元量化器、數位類比轉換器的目的,同時消除類比數位轉換器電容陣列不匹配與數位類比轉換器對動態元件匹配的需求。
    為驗證此架構,本電路之晶片採用 40 奈米 1P9M 互補式金氧半導體製程製作,在 0.9/2.5 伏特電源電壓及 4.8 兆赫茲取樣頻率操作下,本架構可達到 SNDR為 80 dB,對應之 ENOB 為 12.9-bit,其功耗為 327 微瓦特,換算之能源效率指標(Figure of Merit) FOMS 為 158.8 dB,FOMW為 0.81 pJ/lev。


    Abstract
    This thesis presents a Dynamic Element Matching (DEM)-Free Second-Order Multi-Bit Discrete-Time Delta-Sigma Modulator with Charge-Injection-Cell Analog-to-Digital Converter (ADC).
    As a multi-bit Delta-Sigma Modulator (DSM), the use of the multi-bit quantizer and the digital-to-analog converter (DAC) requires dealing with the issue of dynamic element matching (DEM). Therefore, this thesis proposes a reusable charge injection circuit architecture to achieve the purposes of the multi-bit quantizer and DAC, while eliminating the need for dynamic element matching.
    The prototype is fabricated in 40nm 1P9M CMOS technology. At 0.9V/2.5V supply voltage and 4.8MS/s sampling rate, the proposed ADC achieves SNDR 80dB and corresponding ENOB 12.8-bit with consumes 327 μW power, resulting figure of merit (FoM) FOMS 158.8 dB and FOMW 0.81 pJ/lev.

    Content List of Figures 6 List of Tables 9 Chapter 1 Introduction 10 1.1 Motivation 10 1.2 Architecture selection 10 1.3 Thesis Organization 12 Chapter 2 Fundamentals of ADC 13 2.1 Resolution 13 2.2 Dynamic Range 13 2.3 Quantization Error 14 2.4 Offset Error and Gain Error 15 2.5 Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) 16 2.6 Signal-to-Noise Ratio (SNR) 17 2.7 Signal-to-Noise and Distortion Ratio (SNDR) 17 2.8 Spurious-Free Dynamic Range (SFDR) 18 2.9 Effective Number of Bits (ENOB) 18 2.10 Walden Figure of Merit (FoMW) and Schreier Figure of Merit (FoMS) 18 Chapter 3 Overview of DSM 20 3.1 Nyquist-Shannon Sampling Theorem 20 3.2 Oversampling 20 3.3 Noise shaping 22 3.4 STF and NTF 23 3.5 Discrete-Time and Continuous-Time 24 3.6 Topology of DSM 25 3.6.1 First-Order DSM 25 3.6.2 Second-Order DSM 26 3.6.3 High-Order DSM 26 3.6.4 Multi-Stage and Multi-Quantizer DSM 29 3.6.5 Multi-Bit Quantizer 32 3.6.6 Cascade of Integrators (CI) and Cascade of Resonators (CR) 32 3.6.7 Loop Filters with Distributed Feedforward (FF) 34 3.6.8 Loop Filters with Distributed Feedback (FB) 38 3.6.9 Error Feedback 39 3.7 Block of DSM 39 3.7.1 Sample and Hold Circuit 39 3.7.2 Integrator 40 3.7.2.1 Delaying Discrete-Time Integrator 41 3.7.2.2 Non-Delaying Discrete-Time Integrator 42 3.7.3 Quantizer 44 3.7.4 Digital-to-Analog Converter 44 3.8 Non-Idealities 44 3.8.1 kT/C Noise 45 3.8.2 Finite gain of Opamp Integrator 45 3.8.3 Dead-Zones 46 3.8.4 Stability 46 3.8.5 Idol Tone 46 3.8.6 Dynamic Element Matching and Mismatch Shaping 47 3.9 Design Flow of DSM 48 Chapter 4 Circuit Implementation of Proposed DSM 49 4.1 Block Diagram and Top-level Schematic of Proposes DSM 49 4.2 Sample and Hold Circuit 53 4.3 Floating Inverter Amplifier 54 4.4 Summing Circuit 55 4.5 Charge-Injection-Cell ADC 56 4.6 Summary 59 Chapter 5 Simulation Result 60 5.1 Pre-Simulation and Post-Simulation 60 5.2 Performance Discussion 65 5.3 Performance Summary and Comparison 67 Chapter 6 Conclusion and Future Work 69 6.1 Conclusion 69 6.2 Future Work 69 Bibliography 71

    Bibliography
    [1] B. Murmann, “ADC Performance Survey 1997-2022,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html
    [2] Jingjing Hu, “Higher-order DWA in bandpass delta-sigma modulators and its implementation,” ISCAS 2016.
    [3] Alberto Celin, “A reduced hardware complexity data-weighted averaging algorithm with no tonal behavior,” ISCAS 2016.
    [4] Wei Jin, “A DEM-Free Sturdy MASH Delta-Sigma Modulator with a Highly-Linear Tri-level DAC,” EDSSC 2019.
    [5] M. G. Kim, “A 0.9 V 92 dB Double-Sampled Switched-RC Delta-Sigma Audio ADC,” IEEE Journal of Solid-State Circuits, vol. 43, no. 5, pp. 1195-1206, May 2008.
    [6] José M. de la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp. 1-21, Jan. 2011.
    [7] R. H. Walden, “Analog-to-Digital Converter Survey and Analysis,” IEEE Journal on Selected Areas in Communications, vol.17, no.4, pp. 539-550, Apr. 1999.
    [8] S. Rabii and B. A. Wooley, “A 1.8-V Digital-Audio Sigma-Delta Modulator in 0.8-µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 32, no. 6, pp.783-796, June 1997.
    [9] Shanthi Pavan, Richard Schreier and Gabor C. Temes, Understanding Delta-Sigma Data Converters, 2nd ed.: WILEY, 2017.
    [10] T. Hayashi, Y. Inabe, K. Uchimura, and T. Kimura, “A multistage delta-sigma modulator without double integration loop,” Digest of Technical Papers, IEEE International Solid-State Circuits Conference, vol. 29, pp. 182–183, IEEE, Feb. 1986.
    [11] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T. Yoshitome, “A 16- bit oversampling A-to-D conversion technology using triple-integration noise shaping,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 921–929, Dec. 1987.
    [12] N. Maghari, S. Kwon, G. Temes, and U. Moon, “Sturdy MASH - modulator,” Electronics Letters, vol. 42, no. 22, pp. 1269–1270, Feb. 2006.
    [13] N. Maghari, S. Kwon, and U.-K. Moon, “74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain,” IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2212–2221, Aug. 2009.
    [14] L. Longo, B.-R. Hong, “A 15b 30kHz Bandpass Delta-Sigma Modulator”, ISSCC-93 Dig., pp. 226-227, Feb. 1993
    [15] S. Bazarjani, W.M. Snelgrove, “A 160-MHz Fourth-Order Double-Sampled SC Bandpass Sigma-Delta Modulators Using Half-Delay Integrators”. IEEE 1. of Solid-state Circuits, vol. 45, pp. 547-555, May 1998.
    [16] L. Bruton, “Low-Sensitivity Digital Ladder Filters,” IEEE Transactions on Circuits and Systems, vol. 22, no. 3, pp. 168–176, Mar 1975
    [17] M. Keskin, “Low-voltage switched-capacitor resonators,” IEEE 2nd Dallas CAS Workshop on Low Power/Low Voltage Mixed-Signal Circuits and Systems, Jan, 2001.
    [18] J. Silva, U. Moon, J. Steensgaard, and G. Temes, “Wideband low-distortion delta-sigma ADC topology,” Electronics Letters, vol. 37, no. 12, pp. 737-738, 2001.
    [19] J. Steensgaard-Madsen, High-Performance Data Converters. Ph.D. dissertation, The Technical University of Denmark, 1999.
    [20] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw-Hill, 2002.
    [21] Piero Malcovati, “SDToolbox 2,” [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/25811-sdtoolbox-2
    [22] Maloberti & Malcovati, “Chapter 6 Delta Sigma Simulink Models,” [Online]. Available: http://ims.unipv.it/Courses/Dataconv.php
    [23] Richard Schreier, “Delta Sigma Toolbox,” [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox
    [24] R.M. Gray, “Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input,” IEEE Transactions on Communications, vol. 37, no. 6, pp. 588-599, June 1989.
    [25] R. S. Ashwin Kumar, "Analysis and Design of a Discrete-Time Delta-Sigma Modulator Using a Cascoded Floating-Inverter-Based Dynamic Amplifier," IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3384-3395, Nov. 2022.
    [26] S. Ma, “A discrete-time audio ΔΣ modulator using dynamic amplifier with speed enhancement and flicker noise reduction techniques,” IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 333–343, Oct. 2020.
    [27] S.-H. Liao, “A 1V 175 μW 94.6 dB SNDR 25 kHz bandwidth delta-sigma modulator using segmented integration techniques,” IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2523–2531, Apr. 2019.
    [28] B. Zhang, “A 91.2 dB SNDR 66.2 fJ/conv. dynamic amplifier based 24kHz ΔΣ modulator,” IEEE Asian Solid-State Circuits Conf. (A-SSCC), pp. 317–320, Nov. 2016.
    [29] M. Jang, C. Lee, and Y. Chae, “A 134-μW 99.4-dB SNDR audio continuous-time delta-sigma modulator with chopped Negative-R and tri-level FIR-DAC,” IEEE J. Solid-State Circuits, vol. 56, no. 6, pp. 1761–1771, Jun. 2021.
    [30] B. Gonen, “A dynamic zoom ADC with 109 dB DR for audio applications,” IEEE J. Solid-State Circuits, vol. 52, no. 6, pp. 1542–1550, 2017.
    [31] M. Honarparvar, “A 0.9V 100 μW feedforward adder-less inverter-based mash ΔΣ modulator with 91 dB dynamic range and 20 kHz bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675–3687, 2018
    [32] M. Grassi, “A multi-mode SC audio ΔΣ modulator for MEMS microphones with reconfigurable power consumption, noise-shaping order, and DR,” ESSCIRC Conf., 42nd Eur. Solid-State Circuits Conf., Sep. 2016, pp. 245–248.
    [33] Y. Yoon, “A 0.4V 63 μW 76.1 dB SNDR 20 kHz bandwidth delta-sigma modulator using a hybrid switching integrator,” IEEE J. Solid-State Circuits, vol. 50, no. 10, pp. 2342–2352, 2015.
    [34] Y.-H. Hwang, “A compact 87.1-dB DR bandwidth-scalable delta-sigma modulator based on dynamic gain-bandwidth-boosting inverter for audio applications,” IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2017, pp. 293–296.
    [35] S. Lee, “A 300 μW audio ΔΣ modulator with 100.5 dB DR using dynamic bias inverter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 11, pp. 1866–1875, 2016.
    [36] A. Matsuoka, “Fully dynamic discrete time ΔΣADC using closed-loop two-stage cascoded floating inverter amplifiers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 944–948, Mar. 2022.
    [37] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure," IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010
    [38] Kyojin David Choo, “Energy-Efficient Motion-Triggered IoT CMOS Image Sensor With Capacitor Array-Assisted Charge-Injection SAR ADC,” IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 2921-2931, Nov. 2019.
    [39] Min-Ruei Wu, “A 400KS/s 62.6pJ/c.-s 10-bits Column-Parallel Hybrid ADC Using Self-Adaptive Charge-Injection Cell and Single-Slope Conversion,” 2022 VLSI Design/CAD Symposium, Virtual Meeting, Taiwan, Aug. 2-5, 2022.
    [40] Cong Wei, “An Energy-Efficient Discrete-Time Delta–Sigma Modulator With Dynamic-Range Enhancement and Tri-Level CDAC,” IEEE Journal of Solid-State Circuits (Early Access), pp. 1-10, March 2024.

    QR CODE