簡易檢索 / 詳目顯示

研究生: 賀文芸
Ho, Wen-Yun
論文名稱: 磊晶結構與佈局對氮化鋁鎵/氮化鎵發光高電子遷移率電晶體影響之研究
Study on the Effects of Epitaxy and Layout on AlGaN/GaN Light-Emitting HEMTs
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 盧向成
Lu, Shiang-Cheng
張庭輔
Chang, Ting-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 71
中文關鍵詞: 氮化鎵發光高電子遷移率電晶體氮化鋁鎵/氮化鎵高電子遷移率電晶體
外文關鍵詞: GaN, Light-Emitting HEMT, AlGaN/GaN, HEMT
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本次實驗成功於藍寶石基板上設計並成功製作出具有不同量子井結構的氮化鋁鎵/氮化鎵發光高電子遷移率電晶體(Light Emitting High Electron Mobility Transistor , LE-HEMT)。本論文著重於磊晶結構中加入p型氮化鋁鎵電子阻擋層(Electron Blocking Layer, EBL)及多量子井(Multiple-Quantum Well, MQW)的影響。
    電性方面,作為對照組的單量子井發光高電子遷移率電晶體閾值電壓(Threshold Voltage, V_th) 為-0.013 V,而加入EBL與MQW結構後分別向左偏移至-1.063 V與-0.904 V。而當閘極電壓操作在5 V時,最大飽和電流在加入EBL與MQW結構後由382.42 mA/mm降低為361.71 mA/mm與238.96 mA/mm。
    發光特性方面,外部量子效率(External Quantum Efficiency, EQE)在加入EBL與MQW結構後由0.198 %分別提升為0.199 %與 0.217 %。另外對於效率下降(Efficiency Droop)也有改善,在加入EBL與MQW結構後由0.0916 %分別降低至0.0407 %與 0.0194 %。
    本次實驗也探討了不同佈局結構對於氮化鋁鎵/氮化鎵發光高電子遷移率電晶體的影響,包含:線性、圓形、指叉狀與四顆圓形並聯的佈局。


    In this thesis, AlGaN/GaN light-emitting high electron mobility transistor (LE-HEMT) with different quantum well structures on sapphire are demonstrated. We focus on the impact of adding a p-AlGaN electron blocking layer (EBL) and multiple-quantum well (MQW) in the epitaxy.
    The threshold voltage (V_th) of a baseline LE-HEMT with a InGaN single quantum well is -0.013 V, which shifts to -1.063 V and -0.904 V after inserting EBL and MQW, respectively. When the gate voltage is 5 V, the maximum saturation current for the LE-HEMT with InGaN single quantum well is 382.42 mA/mm, which decreases to 361.71 mA/mm with the EBL and 238.96 mA/mm with the MQW.
    In terms of light emitting characteristics, the external quantum efficiency (EQE) is 0.198%, 0.199% and 0.217% with EBL and MQW, respectively. Efficiency droop decreases from 0.0916% to 0.0407% and 0.0194% after inserting the EBL and MQW.
    Furthermore, we also study AlGaN/GaN LE-HEMTs with different device layouts, including linear, circular, multi-finger, and four paralleled circular layouts.

    中文摘要..................................i Abstract.................................ii 致謝......................................iv 目錄......................................vi 圖目錄....................................ix 表目錄....................................xii 第一章 序論..............................1 1.1 前言..................................1 1.2 文獻回顧..............................3 1.2.1 氮化鋁鎵/氮化鎵高電子遷移率電晶體.....3 1.2.2 氮化鎵發光二極體....................4 1.2.3 氮化鎵二極體單片集成.................5 1.2.4 指叉狀佈局..........................6 1.3 研究方向..............................7 1.4 論文架構..............................8 第二章 原理簡介與實驗設計.................9 2.1 氮化鎵相關特性........................9 2.1.1 氮化鋁鎵/氮化鎵異質結構..............9 2.2 AlGaN/GaN高電子遷移率電晶體............11 2.2.1 P型氮化鎵閘極高電子遷移率電晶體.......11 2.3 發光元件..............................13 2.3.1 氮化鎵發光元件.......................13 2.3.2 發光量測.............................14 2.3.3 效率下降(Efficiency Droop)...........16 2.4 元件設計...............................18 2.4.1 發光高電子遷移率電晶體................18 2.4.2 電子阻擋層...........................20 2.4.3 多重量子位能井.......................20 第三章 元件製程............................21 3.1 磊晶結構...............................21 3.2 元件製作流程...........................22 3.2.1 對準記號蝕刻(Mask 1).................23 3.2.2 元件隔離 Device isolation (Mask 2)..26 3.2.3 P型氮化鎵歐姆接觸....................27 3.2.4 氧化銦錫與P型氮化鎵蝕刻(Mask 3).......28 3.2.5 N型歐姆接觸金屬(Mask 4)..............30 3.2.6 第一層襯墊金屬 (Mask 5)..............32 3.2.7 氧化層沉積 (Mask 6)..................33 3.2.8 第二層襯墊金屬 (Mask 7)..............34 3.3 元件尺寸與俯視圖.......................35 第四章 量測結果與分析......................38 4.1 不同磊晶結構分析.......................38 4.1.1 電性分析............................38 4.1.2 發光特性分析.........................43 4.2 不同佈局結構分析.......................50 第五章 結論及未來展望.......................65 參考文獻 ..................................66

    [1]H. Matsunami, "State-of-the-art wide band-gap semiconductors for power electronic devices," in International Meeting for Future of Electron Devices, 2004., pp. 21-22, 2004
    [2]U. K. Mishra, P. Parikh, and W. Yi-Feng, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, 2002
    [3]T. R. Lenka and A. K. Panda, "Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT," Semiconductors, vol. 45, no. 5, pp. 650-656, 2011
    [4]M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, "Observation of a two‐dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN‐AlxGa1−xN heterojunctions," Applied Physics Letters, vol. 60, no. 24, pp. 3027-3029, 1992
    [5]O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999

    [6]M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction," Applied Physics Letters, vol. 63, no. 9, pp. 1214-1215, 1993
    [7]N. Q. Zhang, S. Keller, G. Parish, S. Heikman, S. P. DenBaars, and U. K. Mishra, "High breakdown GaN HEMT with overlapping gate structure," IEEE Electron Device Letters, vol. 21, no. 9, pp. 421-423, 2000
    [8]K. J. Chen et al., "GaN-on-Si power Technology: Devices and Applications," IEEE Transactions on Electron Devices, vol. 64, no. 3, pp. 779-795, 2017
    [9]H. P. Maruska and W. C. Rhines, "A modern perspective on the history of semiconductor nitride blue light sources," Solid-State Electronics, vol. 111, pp. 32-41, 2015
    [10]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type conduction in Mg-doped GaN treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, p. L2112, 1989.
    [11]S. Nakamura, M. Senoh, and T. Mukai, "High‐power InGaN/GaN double‐heterostructure violet light emitting diodes," Applied Physics Letters, vol. 62, no. 19, pp. 2390-2392, 1993

    [12]S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994
    [13]Z. Li, J. Waldron, T. Detchprohm, C. Wetzel, R. F. Karlicek, Jr., and T. P. Chow, "Monolithic integration of light-emitting diodes and power metal-oxide-semiconductor channel high-electron-mobility transistors for light-emitting power integrated circuits in GaN on sapphire substrate," Applied Physics Letters, vol. 102, no. 19, p. 192107, 2013
    [14]C. Liu, Y. Cai, Z. Liu, J. Ma, and K. M. Lau, "Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors," Applied Physics Letters, vol. 106, no. 18, p. 181110, 2015
    [15]"A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors," Journal of Semiconductors, vol. 34, no. 7, p. 074005, 2013,
    [16]A. Chvála, J. Marek, P. Príbytný, A. Šatka, M. Donoval, and D. Donoval, "Effective 3-D device electrothermal simulation analysis of influence of metallization geometry on multifinger power HEMTs properties," IEEE Transactions on Electron Devices, vol. 64, no. 1, pp. 333-336, 2017

    [17]X. Guo and E. F. Schubert, "Current crowding in GaN/InGaN light emitting diodes on insulating substrates," Journal of Applied Physics, vol. 90, no. 8, pp. 4191-4195, 2001
    [18]O. Ambacher et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, no. 1, pp. 334-344, 2000
    [19]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, 2001
    [20]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, "Recessed-gate structure approach toward normally off high-Voltage AlGaN/GaN HEMT for power electronics applications," IEEE Transactions on Electron Devices, vol. 53, no. 2, pp. 356-362, 2006
    [21]X. S. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. S. Shur, "Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate," Electronics Letters, vol. 36, pp. 753-754, 2000.

    [22]G. Greco, F. Iucolano, and F. Roccaforte, "Review of technology for normally-off HEMTs with p-GaN gate," Materials Science in Semiconductor Processing, vol. 78, pp. 96-106, 2018
    [23]D. Iida, Z. Zhuang, P. Kirilenko, M. Velazquez-Rizo, and K. Ohkawa, "Demonstration of low forward voltage InGaN-based red LEDs," Applied Physics Express, vol. 13, no. 3, p. 031001, 2020
    [24]Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Applied Physics Letters, vol. 91, no. 14, 2007.
    [25]J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, "On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers," Applied Physics Letters, vol. 93, no. 12, 2008
    [26] E. F. Schubert, Light-Emitting Diodes, 2 ed. Cambridge: Cambridge University Press, 2006.
    [27]X. C. Wei, L. Zhang, N. Zhang, J. X. Wang, and J. M. Li, "Recombination dynamics of InGaN/GaN multiple quantum wells with different well thickness," MRS Advances, vol. 1, no. 2, pp. 197-202, 2016

    [28]H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express, vol. 19, no. S4, pp. A991-A1007, 2011
    [29]C.-C. Pan et al., "High-power, low-efficiency-droop semipolar single-quantum-well blue light-emitting diodes," Applied Physics Express, vol. 5, no. 6, p. 062103, 2012
    [30]A. K. Maciej, P. Karolina, T. Andrzej, K. Renata, M. Monika, and E. Kamińska, "Ohmic contact formation to GaN by Ge+ implantation doping: Implantation fluence and encapsulation layer studies," Materials Science in Semiconductor Processing, vol. 146, p. 106674, 2022.
    [31] S. Rajabi et al., "A demonstration of nitrogen polar gallium nitride current aperture vertical electron transistor," IEEE Electron Device Letters, vol. 40, no. 6, pp. 885-888, 2019.
    [32]M.-L. Lee, C.-H. Chen, and J.-K. Sheu, "Al0. 3Ga0. 7N/GaN heterostructure transistors with a regrown p-GaN gate formed with selective-area Si implantation as the regrowth mask," Physica E: Low-dimensional Systems and Nanostructures, vol. 124, p. 114367, 2020.
    [33] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, and J. Huang, "InGaN–GaN Nanorod Light Emitting Arrays Fabricated by Silica Nanomasks," IEEE Journal of Quantum Electronics, vol. 44, no. 5, pp. 468-472, 2008

    QR CODE